quinta-feira, 11 de janeiro de 2018





"AMIGOS, ESTAMOS COM DISPONIBILIDADE DE CURSOS DE ELETRÔNICA DO NOBREAK PARA  PRINCIPIANTES,  DICAS DE MANUTENÇÃO,  DICAS DE DEFEITOS, DESCRIÇÃO DE FUNCIONAMENTO DO NOBREAK."
ARQUIVOS PODERÃO SER ENVIADOS EM PDF PELO ZAP.
QUEM ESTIVER INTERESSADO,  ACESSE MEU ZAP 71 986177897 ATRAVÉS DO PIX
BANCO  BRADESCO  SALVADOR. JOSÉ JOAQUIM SANTOS SILVA "
jjsound45@gmail.com

 

quarta-feira, 4 de outubro de 2017

COMO FUNCIONA A INTERNET VIA RADIO?

A internet, como muitos sabem, é o melhor meio de comunicação e transmissão de dados, e hoje, com suas grandes evoluções tecnológicas, dispomos de várias maneiras de conexão. Internet via rádio, telefônica, satélite, 3G e 4G por exemplo, são formas de se conectar mais comuns entre as pessoas; todas criadas e desenvolvidas de modo a facilitar e tornar eficiente o acesso de seus usuários.
Antes de tudo, pode esquecer o rádio comum. Sua internet não tem nada a ver com rádio AM/FM nem com os locutores que invadem sua casa todos os dias. O funcionamento da internet via rádio é (razoavelmente) simples de entender. É tudo feito por torres (que transmitem o sinal) e antenas (que recebem), além de outros aparelhos, como o modem, que torna possível a sua conexão à rede mundial de computador.

Como funciona?

RELACIONADO
  • Como usar o celular como modem?

    Como usar o celular como modem?

A internet via rádio é usada atualmente por uma vasta parte da população, tanto em seus trabalhos quanto em suas casas. Principalmente em cidades pequenas, o funcionamento é bem melhor ao funcionamento em cidades grandes, pois como veremos a seguir, a disposição da antena transmissora com a receptora faz toda a diferença. Independentemente qual seja o seu compromisso com a rede, os usuários buscam uma boa velocidade onde possam navegar na internet e ter acesso a tudo que esse mundo virtual lhe oferece, tudo isso com rapidez. E, para isso, o mesmo precisa, além de um bom sinal, um bom provedor e empresa, responsáveis por este serviço. Algo que atrai os usuários para com o uso deste sistema de internet é a questão do custo deste ser baixo, em relação a internet 3G, ou até mesmo através de um modem DLS, por exemplo. No que tange a oscilação de sinal, devemos deixar claro que todos os tipos de conexão caem.
É importante saber que o provedor de internet deve ter várias torres de internet distribuídas pela cidade, cada uma responsável por transmitir para uma parte da mesma. Essas torres são conhecidas como POPs, e são elas que transmitem o sinal da internet. Caso essa distribuição não seja bem planejada, acarreta em perda de sinal.

Quando você adquire a internet via rádio, é feita a instalação de uma antena em sua residência. Ela deve ser colocada da maneira mais precisa possível para que fique perfeitamente alinhada com a torre (ou seja, deve ser possível enxergar a torre sem nenhum obstáculo na frente). Daí o motivo de sempre ser instalada no topo das residências e prédios.
Essa antena receberá o sinal emitido pela torre e, através de um cabo, o transportará ao modem. Algumas vezes esse aparelho fica próximo à antena ou junto ao computador. Esse aparelho realiza as funções e é conectado à placa de rede do computador, que permite a conexão com a internet.
Na imagem abaixo você pode ver, como consiste o funcionamento.
Como funciona a internet via rádio?
RELACIONADO
  • O que seria do mundo sem internet?

    O que seria do mundo sem internet?

Perceba que o sinal da antena emissora 1 para a casa receptora 1 chega sem obstáculo algum, muito diferente da casa receptora 4, a foto ilustrativa foi feita assim para você entender que não, o sinal não faz curva por meio do canal de comunicação, não sobe morro, não faz nada do gênero, passa diretamente pelo obstáculo, explicando então a perda de qualidade no serviço quando mal instalado. Uma solução seria refletir uma parte do sinal de rádio pelo prédio numero 6, podendo ser utilizada para se alcançar pontos onde não se consegue chegar diretamente, no caso casa 4 e 5. No entanto, as reflexões causam atenuações em algumas faixas de frequência (e essas atenuações são totalmente imprevisíveis), sendo assim, o protocolo utilizado deve ser capaz de lidar com a perda causada por essas atenuações. Concluindo, se o prédio 6 não refletir o sinal para as casas ao lado, o sinal vai chegar com uma péssima qualidade, percebe-se então o planejamento que deve ser feito para que o sinal chegue sem grandes perdas para a população.
Um dos protocolos que visa resolver essa perda é o utilizado pelo IEEE  (Instituto de Engenheiros Eletricistas e Eletrônicos), o protocolo chama-se OFDM (Orthogonal Frequency Division Multiplexing) que, ao contrário do FHSS ou DSSS (Frequency-Hopping Spread Spectrum e Direct-Sequence Spread Spectrum – utilizados em rede local), não transmite uma, mas centenas de portadoras ao mesmo tempo. Sendo necessário que apenas algumas dessas portadoras cheguem ao receptor para que a informação seja recuperada. Isso possibilita que um equipamento WiMAX (Worldwide Interoperability for Microwave Access/Interoperabilidade Mundial para Acesso de Micro-ondas) seja capaz de se comunicar em distâncias de até 6 Km sem visada, utilizando apenas o mecanismo de reflexão.

Frequências de Operação:

O IEE procurou criar um protocolo que seja capaz de operar em frequências que vão desde 2,4 GHz até 66 GHz. Mas isso não quer dizer que chegue a essa taxa, e sim que cada fabricante tem que usar o protocolo mas desenvolver uma antena que suporte tal serviço modificando apenas as antenas, o sistema de potência e outros subsistemas menores que sejam dependentes da frequência.
VANTAGENS
  • Acesso direto à internet;
  • Não utiliza linha telefônica;
  • Internet 24h por dia;
  • Baixo custo de manutenção;
  • Velocidade rápida caso a instalação e configuração seja feita da maneira correta.
DESVANTAGENS
  • Alguns provedores não fornecem um suporte de qualidade;
  • Obstáculos entre a torre e a antena prejudicam seriamente a conexão caso não seja resolvido por protocolos e modificações nas antigas antenas;
  • Caso o vento mova a antena a conexão fica prejudicada;
  • Funcionamento lento em caso de P2P (torrent, etc...);
  • Problemas de estabilidade em caso de mau tempo.
Contudo, você, usuário final, é que tem a missão de escolher qual a forma de conexão que melhor atenda a suas expectativas. Se houver necessidade de uma portabilidade basta incluir um roteador, que emita o sinal em suas proximidades, algo bem útil em tempos de portabilidade como agora.
Você utiliza internet via rádio? Está satisfeito com o serviço prestado?


jjsound45@gmail.com

USAR ESTABILIZADOR NÃO É VANTAGEM, É PREJUIZO

Você usa seu computador ligado à aquele famoso aparelhinho que volta e meia da um “tlec”? Sim, estamos falando do estabilizador. Pois saiba que você está colocando em risco seu computador, e utiliza um aparelho que na verdade pode prejudicar seu PC.
Pare tudo o que está fazendo e olhe para o seu computador. Responda para você mesmo: onde ele está conectado? A resposta que a grande maioria dos usuários deve dar é a mesma: estabilizador. O equipamento é responsável pela conexão de aparelhos eletrônicos a tomadas na casa dos brasileiros há décadas, antes mesmo de existirem os computadores pessoais.
Isso acontece porque, desde os idos de 1940, o Brasil sofre com a instabilidade na tensão das redes elétricas, o que pode causar problemas sérios aos aparelhos eletrônicos. Mas você já se perguntou se os estabilizadores realmente conseguem estabilizar as correntes elétricas para mandar um sinal limpo aos dispositivos?



Quando um estabilizador é comprado, os consumidores estão esperando uma série de vantagens para seus equipamentos. Promete-se aos usuários, que os dispositivos serão os principais responsáveis pelo nivelamento da tensão elétrica (voltagem) da rede. Com isso, picos de energia não afetariam diretamente os aparelhos.
Teoricamente, sempre que a rede elétrica sobe de tensão, os estabilizadores entram em ação para regular a voltagem aplicada a cada aparelho e evitar que eles sejam queimados. Quando a rede baixa sua tensão, o processo ocorre de maneira inversa: ele é utilizado para aumentar a tensão e não deixar que os eletrônicos sejam desligados. Ressaltamos: teoricamente.

O que eles realmente fazem?

Pode-se dizer que os estabilizadores servem para queimar no lugar dos aparelhos. Como assim, Tecmundo? É simples, todos eles são construídos com um fusível de proteção, que é queimado em situações de tensão muito instável da rede elétrica. Quando isso acontece, o estabilizador deixa de funcionar e o fornecimento de energia é interrompido.
Dessa forma, a instabilidade na tensão (possíveis sobrecargas) não chega diretamente aos eletroeletrônicos e estragos maiores são evitados. Fora isso, também se pode dizer que estabilizadores são excelentes extensores de capacidade para tomadas (os populares “Benjamins” ou “Tês”). Isso porque permitem que vários aparelhos sejam ligados em uma mesma tomada, mas sem riscos de curto-circuito (um perigo existente).
Nós contatamos o professor do Departamento de Eletrotécnica da Universidade Tecnológica Federal do Paraná, Eduardo Romaneli, doutor em Eletrônica de Potência, para trazer um parecer técnico ao artigo. Ele nos deu várias informações que comprovam a ineficácia dos estabilizadores em redes domésticas no Brasil.
Segundo ele, atualmente, com o desenvolvimento de fontes de alimentação universais que atuam automaticamente em redes de 127 V ou 220 V, o uso de estabilizadores é desnecessário. O professor pondera também que estabilizadores não têm capacidade para atuar na qualidade da energia elétrica, por isso, as redes com altos níveis de poluição não têm suas tensões corrigidas (inclusive, há casos em que a qualidade do sinal entregue aos dispositivos eletrônicos é inferior ao da rede comercial).
Romaneli afirma ainda que os melhores estabilizadores oferecem tempos de resposta em torno de 8,3 milissegundos, o que ainda é considerado muito alto. Esse tempo de resposta, quando muito alto, pode ser responsável por falhas de funcionamento em aparelhos sensíveis. Outro ponto negativo é a limitação do efeito de estabilização da tensão limitada a alguns patamares fixos.
Dessa forma, fica claro que a real funcionalidade dos estabilizadores está muito aquém do que se espera de um dispositivo eletrônico de manutenção elétrica. Então surge outra dúvida na cabeça dos usuários: existe algo que possa ser utilizado para uma manutenção da tensão elétrica que seja realmente eficaz?

jjsound45@gmail.com
 

TIPOS DE NOBREAKS

 Se você sofre com frequentes quedas de energia, ou até mesmo procura melhorar a proteção do seu computador, um No-break pode ser a solução. Mantenha seu computador livre das instabilidades da rede elétrica e evite perder arquivos não salvos devido à falta de energia.

O No-break, que em inglês é conhecido como UPS (Uninterruptible Power Supply), é um equipamento que tem como função principal manter seu computador alimentado em caso de falta de energia elétrica, permitindo que você tenha um tempo extra para salvar seu trabalho, além de oferecer uma proteção adicional contra as instabilidades da rede elétrica.
Já deve ser de seu conhecimento que a qualidade da energia elétrica distribuída no Brasil não é 100% limpa, apresentando diversas distorções e instabilidades que podem acarretar na perda de um equipamento, como o computador por exemplo. Veja alguns tipos de interferências presentes na rede elétrica:
Conheça os tipos de No-break
Um No-break, além de manter seu computador ligado tempo o suficiente para que você salve seus arquivos, pode oferecer uma proteção extra contra essas distorções, disponibilizando uma energia mais limpa em sua saída. Mas o nível de proteção e funcionalidade vai depender do tipo do No-break, e em alguns casos ao invés de proteger, pode prejudicar.
Por este motivo, é importante que você conheça como funciona e como um No-break pode ser útil para você, ajudando a decidir por qual modelo terá o melhor Custo x Benefício para seu uso.

Tipos de No-break

A primeira coisa a ser esclarecida sobre os No-breaks é que eles se dividem em duas classes, os Offline, em que o inversor permanece desativado durante o funcionamento normal da rede elétrica, mas no caso de falta de energia, ele leva um curto tempo para ser ativo, e durante este tempo o computador é desalimentado e pode causar danos como já foi explicado neste artigo do Oficina da Net.
Em modelos Online o inversor permanece ativo e não leva tempo alguma para fazer a troca da fonte de alimentação.
No-break Standby (Offline)
É o mais barato e vendido, comum em computadores pessoais. Ele possui uma chave de transferência programada para selecionar a entrada CA (Corrente Alternada) da rede elétrica como fonte de energia primária. No caso de falta de energia, essa chave comuta para o modo de bateria/inversor para continuar alimentando as saídas.
Neste sistema, o inversor somente é ligado com a falta de energia, por isso é chamado Standby (ou Offline). Entre seus principais benefícios podemos citar o baixo custo, alta eficiência e o tamanho reduzido. Se for de boa construção pode ainda oferecer proteção adequada contra ruídos e surtos provenientes da rede elétrica.
Abaixo você pode conferir o diagrama de funcionamento deste modelo, onde a linha contínua representa a alimentação primária, e a linha tracejada o sistema bateria/inversor utilizado para alimentação do sistema durante a falta de energia.
Conheça os tipos de No-break
Esse sistema possui um tempo de comutação de 5 a 10 ms, e normalmente oferece um tipo de onda quadrada na saída.
No-break Linha Interativa (Line Interactive)
Este é o design utilizado frequentemente por servidores de pequenas empresas, web e departamentais. Neste sistema, o inversor de bateria para alimentação CA está sempre conectado à saída do no-break. Desta forma, enquanto houver energia disponível da rede elétrica, o inversor é utilizado para carregar a bateria.
No caso de falha na alimentação de entrada, uma chave de transferência se abre e o inversor é acionado de forma inversa, transformando a energia proveniente da bateria novamente em CA e disponibilizando na saída do no-break.
Como o inversor está sempre ativo, este tipo de sistema oferece um menor tempo de comutação da alimentação, oferecendo um filtro adicional em comparação ao modelo Standby.
Outra característica interessante neste sistema é que ele normalmente possui incorporado um transformador com variação de tap, adicionando um controle sobre a variação da tensão na entrada. Este item é importante, pois sem ele, em ocasiões de baixa tensão na entrada, a função de alimentar a saída seria transferida para a bateria diversas vezes, sem que seja necessário, podendo causar uma falha mais facilmente. Com este sistema, o inversor trabalha de tal forma que permita que a energia da entrada continue alimentando a saída, mesmo com baixa tensão.
Seus principais benefícios são os altos níveis de eficiência, tamanho reduzido, baixo custo e principalmente a alta confiabilidade, unido com a capacidade de corrigir defeitos provenientes da rede elétrica.
Conheça os tipos de No-break
O tempo de comutação deste modelo fica em torno de 2 a 4 ms.
No-break Standby-Ferro Ressonante
Certa época, o no-break standby-ferro ressonante era muito utilizado para faixas de pontência de 3 a 15 kVA. Este modelo utiliza um transformador especial de saturação que possui três enrolamentos (bobina). O circuito de energia primário vai da entrada CA até a saída através de uma chave e do transformador. Caso houver alguma falha na alimentação principal, a chave abre e o inversor passa a alimentar a saída.
Neste modelo de sistema, o inversor encontra-se em standby, e é energizado somente na ocasião de falha de energia, e como dito anteriormente, tal intervalo de tempo pode ser prejudicial ao computador.
O transformador utilizado neste modelo possui uma capacidade especial de ferroressonância, que fornece regulação de tensão limitada e correção da onda de saída. O isolamento dos transitórios da alimentação CA fornecido por ele é tão bom ou melhor que qualquer filtro disponível, porém o transformador cria em si mesmo severas distorções chamadas harmônicos, o que pode ser pior que uma rede elétrica deficiente.
Conheça os tipos de No-break
Outro fator contra o Ferro Ressonante é a grande quantidade de calor gerado pelo transformador ineficiente, além de ser grande em relação aos modelos Standby normais.
Os pontos fortes dele são sua alta confiabilidade e excelente filtragem, porém combinados com baixo nível de eficiência energética e instabilidade ao ser utilizado com fontes que possuem correção do fator de potência (PFC). A união destes aspectos não torna este modelo muito popular.
No-break Online Dupla Conversão
É o tipo mais comum de no-breaks, utilizado para faixas superiores a 10 kVA. Se assemelha ao funcionamento do Standby, porém o circuito de energia primário é na verdade o inversor no lugar da rede CA.
Neste sistema, a interrupção da energia da rede elétrica não provoca a ativação da chave de transferência, isso porque a alimentação da entrada está carregando a bateria, que por sua vez fornece alimentação ao inversor de saída. Por este motivo, no caso de falta de energia, não existe um intervalo de tempo para a comutação da fonte de alimentação, visto que está permanentemente alimentando a saída.
Conheça os tipos de No-break
O grande problema deste sistema é que o carregador da bateria e o inversor convertem todo o fluxo de energia da carga, resultando em uma baixa eficiência energética e maior produção de calor.
A vantagem deste modelo está na saída de uma senoide perfeita, e oferece um maior nível de proteção entre os no-breaks. Um fator contra é o desgaste constante dos componentes, que reduz a confiabilidade em comparação aos demais modelos, além da baixa eficiência energética que se torna uma parte significativa do custo de um no-break durante sua vida útil.
No-break Conversão Delta
É uma tecnologia desenvolvida para suprir as desvantagens do modelo de Dupla Conversão. Neste sistema sempre existe um inversor que fornece a tensão para carga, porém também está presente um conversor delta adicional, que também fornece energia à saída do inversor.
Durante a falta de energia, o sistema tem um comportamento idêntico ao de Dupla Conversão, mas enquanto houver energia disponível na rede elétrica, ele garante uma maior eficiência energética se comparado ao modelo anterior.
Para entender seu funcionamento, veja a figura abaixo:
Conheça os tipos de No-break
O sistema funciona da seguinte maneira, enquanto o No-break de dupla conversão realiza dois trabalhos, o sistema Delta somente realiza um, e de forma mais eficiente.
Conheça os tipos de No-break
Uma característica importante dos no-breaks, independente do tipo, é o formato de onda da energia disponibilizada por ele. No funcionamento básico de um no-break, o inversor necessita transformar a corrente alternada da rede elétrica em contínua para carregar a bateria, e quando ocorre a falta de energia, essa corrente contínua da bateria é novamente transformada em corrente alternada para alimentar o computador. Para ser mais específico, é necessário transformar a corrente em linha reta e contínua, em novamente uma onda analógica de frequência 60 Hz. Os no-breaks mais baratos ou certos modelos antigos disponibilizam em sua saída uma onda do tipo quadrada, conhecida pelo termo “square wave”, em que a tensão varia de forma rápida e direta de 220V para -220V, por exemplo. Esse tipo de onda é extremamente prejudicial aos componentes eletrônicos de uma fonte, podendo danificar os aparelhos mais sensíveis.
Outros modelos baratos e mais recentes fornecem um tipo de onda triangular, conhecido por termos como “pseudo-sine wave”, “modified square wave”, “near sine wave” ou “stepped sine wave”, e a variação não ocorre abruptamente como na onda quadrada, levando um intervalo maior para fazer a variação da tensão, sendo um meio termo entre a onda quadrada e a onda senoidal.
Conheça os tipos de No-break
Um bom no-break deve disponibilizar na saída um formato de onda do tipo senoidal, que se iguala ao da rede elétrica e não causa nenhum tipo de stress ou dano aos componentes da fonte. Consequentemente, modelos com tipo de onda senoidal são mais caros e encontrado na grande maioria das vezes em modelos Online.
Assim como explicado anteriormente, o tipo de onda gerado pelo no-break não possui relação com o modelo do mesmo, seja ele Online ou Offline, etc.. Entretanto, no-breaks de boa construção e marcas conhecidas oferecerão a melhor proteção para seu computador.

No-breaks e outras proteções

Um ponto importante a ser destacado é que você nunca deve utilizar um estabilizador em conjunto com o No-break, seja entre a rede elétrica e ele ou entre ele e o computador. Um estabilizador é feito para receber um tipo de onda senoidal, e ao receber uma onda quadrada, ele pode danificar tanto o computador quanto o No-break, além é claros dos diversos motivos abordados neste artigo que trata sobre o uso dos estabilizadores.
Se você deseja proteger o No-break, utilize um bom filtro de linha que será suficiente para que seu funcionamento seja o melhor possível.

Finalizando

Este artigo foi criado com o intuito de auxiliar você na hora de escolher seu no-break, e tal decisão deve ser tomada com calma, pois não adianta você comprar um no-break dos modelos mais completos se em sua região raramente falta energia. Um No-break Standby servirá pois oferecerá filtragem da rede elétrica e nos raros casos de falta de energia os aspectos negativos do mesmo não devem ser considerados como grandes diferenciais.
O mesmo serve para o contrário, se frequentemente falta energia em sua região, você deve optar por um modelo completo, pois ele será utilizado diversas vezes a mais, necessariamente, e um modelo Standby por exemplo prejudicará seu computador devido ao formato de onda.
Mais sobre: nobreak protecao tipos de nobreak

sábado, 15 de julho de 2017

NO FACEBOOK !

Olá amigos, quero dizer a vocês que eu estou mais no Facebook desenvolvendo meu trabalho.
Então qualquer dúvida, contém comigo.
Não cobro nada por consultoria. Apenas cobro esquemas por serem mais difíceis de se adquirir e dependendo de terceiros.
No Facebook, José Joaquim Santos Silva é fácil.

quarta-feira, 19 de abril de 2017

CONSULTORIA PRA FRENTE

Olá amigos, venho informar a vocês, que consultorias de no breaks de qualquer marca, pode ser depositada uma taxa simbólica de acordo a consciência de vocês amigos. Agora, esquemas, sou obrigado a cobrar porque para conseguir, dependo de outras pessoas com uma certa dificuldade. Estou no Facebook também como José Joaquim Santos Silva.                jjsound45@gmail.com





Qualquer defeito ou algum esquema.


Atendendo pelo watsapp 71 98617-7897. 

Nossa conta é Bradesco agência 232 dig 1.

Conta poupança 0097288 digito 6

José Joaquim Santos Silva.

Desde já agradeço a colaboração de todos

sábado, 3 de dezembro de 2016

OS RELÊS

Bem, muitos técnicos em eletrônica e eletrotécnica e principalmente aqueles que trabalham com nobreaks e estabilizadores que os  manuseia com  frequencia,  mas não sabem como funcionam.
Assim, resolvi tentar dismistificar um pouco esse fabuloso componente que através de pequenas tensões ou pulso, podem acionar dispositivos de grandes tensões.
Um relé (do francês relais), ou, menos frequentemente, relê  (por influência do inglês relay, embora esta forma ainda não esteja dicionarizada) é um interruptor eletromecânico. A movimentação física deste interruptor ocorre quando a corrente elétrica percorre as espiras da bobina do relé, criando assim um campo magnético que por sua vez atrai a alavanca responsável pela mudança do estado dos contatos.

O relé é um dispositivo eletromecânico, com inúmeras aplicações possíveis em comutação de contatos elétricos, servindo para ligar ou desligar dispositivos. É normal o relé estar ligado a dois circuitos elétricos. No caso do relé eletromecânico, a comutação é realizada alimentando-se a bobina do mesmo. Quando uma corrente originada no primeiro circuito passa pela bobina, um campo eletromagnético é gerado, acionando o relé e possibilitando o funcionamento do segundo circuito. Sendo assim, uma das aplicações do relé é usar baixas tensões e correntes para o comando no primeiro circuito, protegendo o operador das possíveis altas tensões e correntes que irão circular no segundo circuito (contatos).
  
Composição de Um Relê Mecânico


Componentes de um relé eletromecânico
As partes que compõem um relé eletromecânico são:
  • eletroímã (bobina) - constituído por fio de cobre em torno de um núcleo de ferro maciço que fornece um caminho de baixa relutância para o fluxo magnético;
  • Armadura de ferro móvel;
  • Conjuntos de contatos;
  • Mola de rearme;
  • Terminais - estes podem variar dependendo da aplicação:
    • Terminais tipo Faston;
    • Terminais para conexão em Bases (Sockets);
    • Terminais para conexão em PCIs (Placas de circuito impresso);
    •  
Nota: Atualmente existem diversas empresas que utilizam relés desenvolvidos para aplicação em PCIs (eletrônica convencional) em ambientes industriais, adaptando esta aplicação através de bases/soquetes. Porém é importante notar que quando aplicado em um ambiente industrial, onde se exige uma fácil reposição e manutenção, estes tipos de terminais facilmente danificam-se e podem causar problemas de mau contato e diversos outros tipos de falhas nas reposições futuras. Para aplicações industriais, seja qual for a sua natureza, é indicada a aplicação de relés com terminais tipo Faston em conjunto com suas bases por serem projetados para resistir a este tipo de operação e ambiente.

Princípio de funcionamento

Processo de Produção
A bobina de um relé é constituída por um fio em torno de um núcleo de aço maciço. Então temos no relé uma bobina, um núcleo de aço que fornece um caminho de baixa relutância para o fluxo magnético, uma armadura de aço móvel e um conjunto, ou conjuntos, de contatos presos a molas. Enquanto a bobina se mantém desenergizada, a força das molas mantém os contatos em estado de repouso de modo a existir uma lacuna de ar no circuito magnético. O estado de repouso pode ser normalmente fechado (NF) ou normalmente aberto (NA), a depender da função do relé no circuito. Quando a bobina recebe a corrente elétrica, a armadura movimenta-se em direção ao núcleo, atraída pelo campo magnético gerado, movimentando mecanicamente o contato ou contatos ligados a esta armadura. No instante em que a força magnética gerada pela circulação de corrente na bobina se torna maior que a força das molas, o contato é atraído fisicamente, sai do estado de repouso e muda a condição do circuito para aberto (se for normalmente fechado) ou fechado (se for normalmente aberto). Quando a circulação de corrente através da bobina cessa, a bobina é desenergizada e o contato volta ao estado de repouso por força da mola.

Se a configuração do contato de um relé é NF (normalmente fechado, ou NC na sigla em inglês) o circuito está fechado enquanto o relé encontra-se desenergizado. Então quando energizado, a conexão física entre contato fixo e móvel se abre e interrompe a passagem de corrente elétrica. O inverso ocorre quando a configuração do contato do relé é NA (normalmente aberto, ou NO em inglês).
Em alguns casos, os relés podem ter mais de um contato formando um conjunto de contatos que atuam simultaneamente com a força magnética, dependendo da função do relé. Há casos também, comuns nas partidas de motores industriais, em que a força da mola, necessária para fazer o contato retornar ao estado de repouso, é substituída pela força da gravidade.

Os relés, exemplificados na imagem utilizada no tópico Componentes de um relé, também têm um fio de ligação da armadura ao terminal, o que garante a continuidade do circuito entre os contatos que se deslocam sobre a armadura e a pista de circuito na Placa de Circuito Impresso (PCB), através do terminal, que é soldada ao PCB. Quando uma corrente elétrica passa através da bobina, o campo magnético resultante atrai a armadura e consequentemente movimenta o contato móvel, fazendo ou quebrando a conexão com um contato fixo. Se o conjunto de contatos for fechado quando o relé foi desenergizado, então o movimento abre os contatos e quebra a conexão, e vice-versa, se os contatos foram abertos. Quando a corrente na bobina é desligada, a armadura é devolvida por uma força tão forte quanto a força magnética, à sua posição relaxada.

A maioria dos relés são fabricados para funcionar rapidamente. Em uma aplicação de baixa tensão, isto ocorre para reduzir o ruído. Em uma aplicação de alta tensão ou corrente elevada, isto ocorre para reduzir a formação de arco. Se a bobina é energizada em tensão DC (corrente contínua), um diodo é frequentemente instalado na bobina, para dissipar a energia do campo magnético em colapso na desativação, o que de outra forma poderia gerar um pico de tensão perigosa para os componentes do circuito. Alguns relés automotivos já incluem o diodo dentro da caixa de relé. Alternativamente, uma rede de proteção de contato, consistituída por um capacitor e resistor em série, pode absorver também este pico se a bobina for projetada para ser energizada em AC (corrente alternada).

Relés automotivos

São muitos os modelos existentes no mercado hoje, eles são especiais porque seu desenho e tecnologia são específicos para carros de passeio, carga e embarcações. Normalmente são relés de corrente alta, nas tensões de 12V e 24V, alguns com proteções em suas bobinas utilizando diodos e resistores. São muitos os modelos com fixações laterais ou de topo, são relés para controlo de faróis, limpadores de para-brisas, lanternas, moto-ventiladores, iluminação, alarmes, motor de partida e outros.


 JOSÉ JOAQUIM SANTOS SILVA

jjsound45@gmail.com
jjsound51@r7.com

OS VARISTORES

Um varistor ou VDR ( do inglês Voltage Dependent Resistor) é um componente eletrônico cujo valor de resistência elétrica é uma função inversa da tensão aplicada nos seus terminais. Isto é, a medida que a diferença de potencial sobre o varístor aumenta, sua resistência diminui.

Os VDRs são geralmente utilizados como elemento de proteção contra transientes de tensão em circuitos, tal como em filtros de linha. Montados em paralelo com o circuito que se deseja proteger, impedem que surtos de pequena duração os atinjam, por apresentarem uma característica de "limitador de tensão". No caso de picos de tensão de maior duração, a alta corrente que circula pelo componente faz com que o dispositivo de proteção, disjuntor ou fusível, desarme, desconectando o circuito da fonte de alimentação. O VDR protege o equipamento a jusante desviando a sobretensão, ou sobrecorrente, para o terra, pois comporta-se como um curto-circuito submetido a altas tensões.



Aplicações

Umas das aplicações mais encontradas atualmente é a utilização dos varistores em equipamentos de proteção indireta contra surtos (picos) de tensão da rede elétrica. Um exemplo desses equipamentos é o filtro de linha, que quando é autêntico possui varistores com o objetivo de "ceifar" a sobretensão que chega da rede.

Esse "ceifamento" se deve a característica do varistor de diminuir a sua própria resistência interna com o aumento da tensão aplicada aos seus terminais. Assim o varistor tem um certo potencial de condutividade, ou seja, é capaz de deixar passar tensões de até um certo limite (300 Volts por exemplo). A tensão excedente do "ceifamento" é convertida em energia térmica.

O varistor possui também um limite de conversão de energia elétrica em térmica, normalmente medido em Watts (W). Uma vez excedido esse limite, ou seja, por algum motivo a sobretensão exceda um certo valor causando uma diminuição da resistência e corrente, o que, consequentemente causará a queima do varistor.
Para evitar a queima do varistor por exposição a uma sobretensão acima do tempo suportável, são utilizados fusíveis de proteção, os quais interrompem o circuito (queimam) antes que ocorram danos àquele componente.

Observações e cuidados na aplicação dos varistores

Em dispositivos de proteção contra surtos, apenas a presença de varistores (MOV-) não é suficiente para uma completa proteção contra os distúrbios no fornecimento de energia elétrica, tais como picos de corrente.

O Varistor, e outros tipos de supressores, não provêem proteção para os equipamentos quando as sobretensões são mantidas por um período longo. A energia térmica convertida pode não ser satisfatoriamente esgotada do equipamento ou grande demais até para o próprio varistor. Nesses casos há risco de início de fogo e/ou queima do componente. Bons protetores ou filtros de linha possuem componentes que medem o calor emitido pelo varistor e cortam a energia, para prevenir sobreaquecimento.

Os filtros de linha nacionais (brasileiros), em geral, ainda não possuem proteção térmica, o que os limita a varistores de pequena capacidade, por questões de segurança. Filtros importados possuem tanto proteção térmica quanto varistores de maior capacidade, os quais suportam maior fluxo de energia.

JOSÉ JOAQUIM SANTOS SILVA

jjsound45@gmail.com
jjsound51@r7.com

sábado, 29 de outubro de 2016

OS DISTÚRBIOS ELÉTRICOS

Distúrbios elétricos


Deixem vossos comentários

Neste artigo, desejo falar a vocês de modo bem simplificado sobre os distúrbios elétricos, que atingem os usuários da área de informática por causa da concessionária elétrica fornecedora de energia de péssima qualidade comprometendo o funcionamento do hardware, gerando instabilidade e corrupções nos softwares, causando assim imensos prejuízos financeiros e materiais.

Distúrbios Elétricos – I 

Nós, enquanto usuários da energia elétrica, somente percebemos um problema na rede elétrica quando há falhas de energia. Essas interrupções causam algum desconforto como a perda de uma planilha ou um documento importante. Porém, os distúrbios elétrico são os maiores causadores de dificuldades nas áreas de TI, causando grandes perdas econômicas em hardware e software. Entretanto, na maioria das vezes, são de fácil solução e de custo infinitamente menores que a substituição de equipamentos ou a perda de dados, muitas vezes, com custos incalculáveis.

Figura 1 – Energia elétrica, o elo mais fraco da TI

As conseqüências da energia de má qualidade

Os problemas financeiros e operacionais das empresas estão diretamente relacionados à dependência dos computadores e outros equipamentos sensíveis aos distúrbios de energia, que geram altos custos financeiros com horas paradas e diminuição da produtividade, além de perda de dados e informações.

A origem dos problemas

Estudos da IBM mostraram que um computador típico, está sujeito a mais de 120 problemas de energia elétrica por mês. Os efeitos destes problemas vão desde travamentos em teclados e degradação do hardware até a completa perda de dados ou ainda queima de componentes e placas.

Figura 2 – Gráfico publicado na Revista Lumière em julho de 2002.

Algumas das causas dos problemas elétricos

Os problemas elétricos podem ser causadas por uma série de variáveis, tais como:
–                   Clima – tempestades, raios;
–                   Defeitos em equipamentos das concessionárias de energia elétrica;
–                   Acidentes de tráfego, como quedas de postes e rede aérea;
–                   Acidentes em obras públicas subterrâneas;
–                   Acidentes por mau uso de equipamentos elétricos na mesma empresa ou empresas próximas;
–                   Vandalismo;
–                   Animais;
–                   Queda de árvores;
–                   Uso de equipamentos elétricos inadequados para a rede instalada ou utilizados sem filtros de proteção de entrada;
–                   Sobrecarga na rede elétrica;

–                   Infraestrutura elétrica deficiente, antiquada ou inapropriada; etc…

Energia senoidal

Em qualquer ponto de um sistema elétrico ideal, a tensão deveria ser uma senoide perfeita, equilibrada, com amplitude e frequência constante. Porém a qualidade da energia elétrica não pode ser completamente controlada pelas concessionárias, uma vez que os sistemas de potência (eletro-eletrônico) são muito suscetíveis a distúrbios decorrentes de fenômenos naturais (descargas atmosféricas, etc) e aqueles inerentes da própria operação do sistema, como curtos-circuitos causados por defeitos de equipamentos, vandalismos e tantos outros. Esses distúrbios causam a deformação da forma de onda e comprometem  funcionamento das cargas e diminuindo a vida útil dos equipamentos.


Figura 3 – Forma de onda senoidal perfeita


Os distúrbios elétricos

Veja no quadro abaixo os 9 tipos de distúrbios elétricos que podem estar presentes nas nossas redes elétricas



O que acontece na prática – Alguns exemplos

Componentes eletrônicos 
Um bom exemplo do que acontece aos componentes eletrônicos, quando ficam expostos aos distúrbios energéticos, são os capacitores eletrolíticos. Eles estão presentes nas fontes de energia, sejam reguladas ou chaveadas, nas placas motherboads de PCs e Servidores, nos HD e em diversas outras aplicações dentro dos equipamentos eletro-eletrônicos.
Ao serem expostos aos distúrbios elétricos os capacitores eletrolíticos podem sofrer desde simples estufamentos até vazamento do óleo isolante, que compromete seu funcionamento e podem causar até acidentes mais graves como incêndios. Esse tipo de problema acontece em médio e longo prazo, quando são expostos a brownout, afundamentos de tensão, sobre e subtensões.

Figura 4 – Capacitores eletrolíticos inchados em uma placa eletrônica
Motores elétricos
O motor de indução submetido a uma tensão PWM, proveniente de um conversor de freqüência, sujeito a distúrbios elétricos (distorções harmônicas), apresentará um aumento de temperatura, dos níveis de vibração e ruído, além de perda de rendimento.

Figura 5 – Imagem térmica de um Motor elétrico sofrendo superaquecimento

Utilização de Estabilizadores de tensão e Nobreaks

 

Estabilizadores de tensão não são tão confiáveis assim, mas no quebra galho, são equipamentos eletrônicos responsáveis por corrigir razoavelmente a tensão da rede elétrica para fornecer aos equipamentos uma alimentação estável e segura. Eles protegem os equipamentos contra brownout, afundamentos de tensão, sobre e subtensões. Mas, é bom não confiarmos demais neles.

Nobreaks on line – dupla conversão filtram a energia elétrica, estabilizam a tensão, provém energia nos momentos de falhas e podem até se queimar para proteger a carga. Isso é conseguido por que suas características construtivas eles destroem a energia na entrada e reconstroem na saída, fornecendo uma energia totalmente limpa dos distúrbios energetico.
Conclusões

O objetivo deste ártigo foi informar, de forma simplificada, os problemas que estamos expostos diariamente.  Vale salientar que a utilização de bons estabilizadores de tensão e nobreaks ajudam a combater os distúrbios elétricos, entretanto eles devem trabalhar em conjunto com os sistemas de SPDA – sistemas de proteção contra descargas atmosféricas (para-raios), sistemas de aterramentos equalizados e instalações elétricas normatizadas que complementam a proteção de uma rede elétrica confiavel e protegida.
 Os nobreaks são equipamentos 100% confiáveis em se tratando de proteger e fornecer energia de qualidade para cargas sensíveis; Como Pcs, ultrassonógrafos, balanças eletrônicas e outros.

JOSÉ JOAQUIM SANTOS SILVA

jjsound45@gmail.com
jjsound51@r7.com

terça-feira, 27 de setembro de 2016

FALANDO DE MANUTENÇÃO PREVENTIVA

terça-feira, 27 de setembro de 2016

FALANDO DE MANUTENÇÃO PREVENTIVA EM NOBREAKS

Manutenção Preventiva

A manutenção preventiva tem como objetivo principal a prevenção da ocorrência de uma falha ou parada do equipamento por quebra, bem como apoiar os serviços de manutenção corretiva com a utilização de uma metodologia de trabalho periódico, ou ainda responsável pelo conjunto de análises que pode interromper ou não um processo produtivo de uma maneira planejada e programada.


Os serviços de manutenção preventiva devem ser planejados e programados, ou seja, todas as etapas do serviço a ser executado devem estar bem definidos, levando em consideração, material, mão de obra necessária e até mesmo a contratação de serviços de empresas especializadas, sendo assim, não podem ser considerados imprevistos na manutenção preventiva. Todo e qualquer tipo de imprevisto é na realidade uma ação corretiva e não deve ser tratado como parte  do serviço preventivo.


Vantagens da manutenção preventiva:
  • Reduzir o envelhecimento ou degeneração dos equipamentos;
  • Melhor estado técnico operacional dos equipamentos;
  • Atuar antes das intervenções corretivas que geram altos custos;
  • Reduzir os riscos de quebras nos equipamentos;
  • Realizar os reparos nas melhores condições para a operação;
  • Programar os trabalhos de conservação.
  •  

Desvantagens da manutenção preventiva:
  • Má concepção ou definição dos trabalhos;
  • Má preparação de trabalho, falha em tempos ou fases;
  • Erros no aprovisionamento ou gestão de estoques;
  • Má organização da manutenção dos tipos preventivo e corretivo;
  • Erros na contratação e sub-contratação;
  • Maus métodos operacionais que afetam o rendimento ou qualidade de execução.

JOSÉ JOAQUIM SANTOS SILVA

domingo, 28 de agosto de 2016

VEM AÍ MUITAS INFORMAÇÕES TÉCNICAS NHS (toda linha)

Em primeiro lugar quero agradecer aos leitores e consultores deste blog pelas primeiras colaborações através de transferências bancárias, agradeço de coração.
Sabemos que cultura e aprendizado não tem preço.

Assim, quero dizer a vocês, que já estou de posse de muitas informações técnicas de toda linha NHS.
Brevemente já estarei digitalizado e colocando para todos nós.
Por isso amigo leitores, continuem colaborando que os ganhos serão para todos.
Quero ressaltar, que minhas informações são detalhadas e com um linguagem fácil de ser compreendida.

Breve vocês vão encarar circuítos NHS já preparados, e com esquema em mãos ok?
Mas, continuem cooperando. O trabalho continua. Depois falaremos da linha ENGETRON.
Quero lembrar a vocês, que eu estou com disponibilidade de esquemas de quase todas as marcas de nobreak de pequeno, médio e alguns de grande porte a preço camarada.

e finalizando, quero lembrar aos amigos que  Considere apoiar o nosso blog fazendo uma
doação de qualquer valor para nos ajudar a mante-lo atualizado com os custos de manutenção, pesquisa, tradução e edição do material postado e finalmente digitalização de esquemas e textos.
Por favor amigos, não é cobrança. Apenas contribua de qualquer país e moeda, a sua
visita será bem-vinda e todos sempre terão acesso as notícias e artigos aqui publicados.
Se voce residir no Brasil e preferir depositar diretamente em ag 232 dig 1 Bradesco Agência Mercado do Ouro Salvador Bahia. Conta 0097288 dig 6 em nome de José Joaquim Santos Silva. Agradecemos a sua compreensão contribuição.

Obrigado a todos.

José Joaquim.
jjsound45@gmail.com

domingo, 21 de agosto de 2016

TODA CAUTELA COM A ELETRICIDADE ESTÁTICA

Introdução

Quem trabalha no ramo da eletrônica e da computação de baixo nível sempre ouve recomendações para prevenir a eletricidade estática, descarregá-la ou utilizar pulseiras e embalagens antiestáticas. Realmente muito se fala a respeito, mas diversas pessoas ligadas à computação não possuem um conceito correto sobre este tipo de eletricidade e o que ela pode causar, por conta disso veremos alguns pontos importantes em relação ao assunto.

O que é?
Eletricidade estática pode ser considerada um excesso ou uma falta de elétrons (para entender o que é elétron consulte este artigo) em algum corpo ou local. Quando isso ocorre dizemos que este corpo ou local está carregado, seja positivamente (com falta de elétrons) ou negativamente (com excesso de elétrons) e está carga fica como que armazenada e quando tem uma oportunidade migra 
para outro corpo ou local tentando manter o equilíbrio elétrico entre as partes.

Como ocorre?

Todo corpo conforme entra em contato com outros corpos e até mesmo com o ar realiza troca de elétrons em si, em alguns materiais estes elétrons não podem se movimentar livremente entre os átomos e por assim dizer ficam quase parados (na verdade está em movimento, mas sem sair de sua órbita) na órbita do núcleo dos átomos sem passar de um átomo a outro. Por isso o termo “eletricidade estática”, a corrente elétrica existe a partir do momento que é criada uma diferença de potencial e então os elétrons fluem do ponto com excesso (negativo) para o ponto com falta de elétrons (positivo, mas por convenção se considera o fluxo do positivo para o negativo) e essa corrente se mantém até que seja estabelecido um equilíbrio entre as partes, ou seja, ambas possuam a mesma quantidade de elétrons. Quando utilizamos o termo “estática” para nos referir a eletricidade nos referimos a uma condição em que um corpo está carregado, ou seja, está com um número diferente entre prótons e elétrons pelo simples fato de ter perdido ou ganhado elétrons no contado com o ambiente. Isso causa uma necessidade de descarga para que o corpo volte a ser eletricamente equilibrado ou neutro.
 O problema é que quanto mais este corpo carregado entra em contato com meios não condutores ele armazena ainda mais carga, por exemplo, uma pessoa com excesso de elétrons cada vez que anda por um carpete se carregará ainda mais, visto o carpete não ser condutor elétrico e não permitir que os elétrons “fujam” do corpo da pessoa, e ao contrario transmitirá ainda mais elétrons pelo contato direto que é feito com ele. Essa pessoa então estará transportando uma enorme quantidade de carga negativa (eletricamente falando) e quando tocar em algo condutor, que possa retirar parte dessa carga e equilibrar o potencial elétrico isso será feito de forma muita rápida equilibrando os prótons e elétrons do corpo.


A descarga eletrostática 
Uma pessoa pode carregar consigo em seu corpo e em suas roupas uma pequena quantidade de elétrons a mais o que por sua vez possibilita uma corrente muito pequena da ordem de alguns miliamperes, mas em compensação a diferença de potencial em relação a outros corpos pode ser da ordem de alguns milhares de volts, para o ser humano isso não passará de um pequeno choque ao tocar no carro ou em uma maçaneta, mas ao entrar em contato com um componente eletrônico que funciona com alguns poucos volts e com baixa corrente poderá ser catastrófico.