Outras peças de motores elétricos

O eixo sustenta a armadura e o comutador. A armadura é um conjunto de eletroímãs (neste caso, três). A armadura neste motor é um conjunto de finas placas de metal unidas, com fios de cobre enrolados em volta de cada um dos três pólos da armadura. As duas pontas de cada fio (um fio para cada pólo) são soldadas em um terminal e então cada um dos três terminais é ligado a uma das placas do comutador. As figuras abaixo facilitam a visão da armadura dos terminais e do comutador:
A peça final de qualquer motor elétrico CC é o ímã de campo. O ímã de campo neste motor é formado pela própria carcaça, mais os dois ímãs permanentes curvos:

Uma extremidade de cada ímã fica encostada na fenda da carcaça, e o clipe de retenção pressiona as outras extremidades de ambos os ímãs . 

Eletroímãs e motores

Para entender como um motor elétrico funciona é importante entender como o eletroímã funciona. (Como funcionam os eletroímãs explica mais detalhes). Um eletroímã é a base de um motor elétrico. Você pode entender como um motor funciona imaginando a seguinte situação. Digamos que você tenha criado um eletroímã simples enrolando 100 voltas de fio em um prego e conectando os terminais do fio a uma pilha. O prego se transforma em um ímã e tem um pólo norte e um pólo sul enquanto a bateria estiver conectada.
Agora digamos que você pegue seu eletroímã feito com prego, atravesse um eixo no meio do prego e o suspenda no meio de um ímã tipo ferradura, conforme mostrado na figura abaixo. Se você ligar uma bateria ao eletroímã de modo que o pólo norte apareça conforme mostrado, a lei básica do magnetismo diz a você o que acontecerá: o pólo norte do eletroímã será repelido pelo pólo norte do ímã tipo ferradura e atraído pelo pólo sul do ímã tipo ferradura. O pólo sul do eletroímã será repelido de maneira similar. O prego se moverá metade de uma volta e então parará na posição mostrada.


Eletroímã em um ímã tipo ferradura
Você pode ver que esse movimento de meia-volta é simplesmente devido à maneira como ímãs se atraem e repelem naturalmente. O importante para um motor elétrico é ir uma etapa adiante, de modo que, no momento em que esse movimento de meia-volta se completar, o campo do eletroímã tenha o sentido invertido. A inversão faz com que o eletroímã complete outra meia-volta de movimento. Para inverter o campo magnético basta mudar a direção do fluxo dos elétrons no fio (invertendo a corrente que vem da bateria). Se o campo do eletroímã for invertido precisamente no momento final da meia-volta de movimento, o motor elétrico girará livremente. 

Armadura, comutador e escovas


Armadura
Veja a imagem da página anterior. A armadura ocupa o lugar do prego em um motor elétrico. A armadura é um eletroímã feito enrolando-se fio fino em volta de dois ou mais pólos de um núcleo de metal. A armadura possui um eixo, e o comutador é conectado ao eixo. No diagrama à direita há três diferentes imagens da mesma armadura: frontal, lateral e na direção do eixo. Na imagem na direção do eixo, a bobina foi ocultada para deixar o comutador mais destacado. Você pode ver que o comutador é simplesmente um par de placas presas ao eixo. Essas placas fornecem duas conexões para a bobina do eletroímã.


Escovas e comutador

Como interagem as partes do motor elétrico

Juntando todas essas peças, surge um motor elétrico:

Armadura
Nesta figura, a bobina da armadura foi ocultada de modo que fique mais fácil ver o comutador em ação. O importante a ser observado é que, à medida que a armadura passa pela posição horizontal, os pólos do eletroímã são invertidos. Devido à inversão, o pólo norte do eletroímã fica sempre acima do eixo, de modo que ele possa repelir o campo magnético do pólo norte do ímã de campo e atrair o do pólo sul do ímã campo.
Se você puder pegar um pequeno motor elétrico, verá que ele possui as mesmas peças descritas acima: dois pequenos ímãs permanentes, um comutador, duas escovas e um eletroímã feito enrolando-se fio ao redor de uma peça de metal. Entretanto, quase sempre o rotor terá três pólos em vez de dois, como explicado neste artigo. Há duas boas razões para que um motor tenha três pólos:
  • fazer com que o motor tenha uma melhor dinâmica. Em um motor de dois pólos, se o eletroímã estiver no ponto de equilíbrio, na horizontal perfeita entre os dois pólos do campo magnético, quando o motor der partida, a armadura pode travar. Isso nunca ocorre em um motor de três pólos.
  • a cada vez que o comutador atinge o ponto em que ele inverte o campo em um motor de dois pólos, o comutador coloca a bateria em curto-circuito (conecta diretamente os terminais positivo e negativo) durante um momento. Isso gasta energia e descarrega a bateria sem necessidade. Um motor de três pólos também resolve esse problema.
É possível ter qualquer número de pólos, dependendo do tamanho do motor e da aplicação específica para a qual será usado.