quinta-feira, 3 de junho de 2010

TRANSISTORES BIPOLARAES

Transistores Bipolares

Transistores Bipolares de porta isolada (IGBTs)

O transistor bipolar de porta isolada (IGBT) destaca-se pelas características de baixa queda de tensão no estado ligado do BJT com as excelentes características de chaveamento, que traz um circuito de acionamento da porta bem simplificado e com alta impedância de entrada do mosfet. Existem no mercado transistores IGBTs com os valores nominais de corrente e de tensão bem acima dos valores encontrados para Mosfets de potência.

Os IGBTs estão gradativamente substituindo os mosfets que se dizem em aplicações de alta tensão, onde as perdas na condução precisam ser mantidas em valores baixos. Mesmo as velocidades de chaveamento dos IGBTs sejam maiores (até 50 kHz) do que as do BJTs e as do mosfets.

Ao contrário do ocorrido no MOSFET, o IGBT não tem nenhum diodo reverso internamente, sendo assim este fator torna sua capacidade de bloqueio para tensões inversas muito baixa, podendo suportar uma tensão inversa máxima em menos de 10 volts.

Princípios de operação do IGBT

A operação do IGBT é muito similar à dos MOSFETs de potência. Para colocá-lo no estado ligado, basta polarizá-lo positivamente no terminal do coletor (C+) em relação ao terminal do emissor (E -). De igual maneira, uma tensão positiva VG aplicada na porta (G) fará o dispositivo passar para o estado ligado (ON), quando a tensão no gate (G) exceder a tensão de limiar. O IGBT passara para o estado desligado (OFF) quando houver o corte de tensão do terminal da porta (G).

Curva Característica de tensão-corrente do IGBT

A curva característica e uma plotagem da corrente de coletor (IC) x a tensão do coletor-emissão (VCE). Quando não houver a tensão aplicada na porta, o transmissor IGBT estará no estado desligado (OFF), onde a corrente (IC) é igual a zero (0) e a tensão que passa através da chave é igual a tensão da fonte.Se a tensão > VGE(th) for aplicada na porta, o dispositivo passará para o estado ligado e permitira a passagem da corrente IC. Essa corrente é limitada pela tensão da fonte e pela resistência de carga. No estado ligado, a tensão através da chave se define a zero.

OS FOTO-ACOPLADORES

Os Acopladores Ópticos ou Optoacopladores são componentes muito simples, porém de grande importância para a eletrônica.

Estes componentes são capazes de isolar com total segurança dois circuitos eletrônicos, mantendo uma comunicação ou controle entre ambos. O isolamento é garantido porque não há contato elétrico, somente um sinal luminoso.
O seu funcionamento é simples: há um emissor de luz (geralmente um LED) e um receptor (fototransistor). Quando o LED está aceso, o fototransistor responde entrando em condução. Com o LED apagado o fototransistor entra em corte. Sabendo que podemos alterar a luminosidade do LED, obtemos assim diferentes níveis na saída.
Podemos também controlar o fototransistor através de sua base, como se fosse um transistor normal.
Os Acopladores Ópticos possuem diversas vantagens sobre outros tipos de acopladores: alta velocidade de comutação, nenhuma parte mecânica, baixo consumo e isolamento total.
Na figura a seguir vemos o esquema de um optoacopldor:

FERRAMENTAS PARA MANIPULAR OS SMDS

Na bancada de trabalho e experiências do hobbista não devem faltar certas ferramentas e equipamentos para montagens, experimentos e testes.
Em algumas delas, devem ser observadas algumas características, como no caso do soldador, que deve ter uma potência de no máximo 30 watts para evitar sobreaquecimento daqueles componentes mais delicados, como no caso de circuitos integrados e de outros semicondutores.
Outro instrumento importante na bancada de trabalho é o multímetro, que deve ser bastante flexível quanto a escalas e tipos de medições. Além das ponteiras de teste, ele deve ter ponteiras que possuam garas do tipo jacaré, para medições de resistências ou outros componentes, sem ser necessário segurar o componente com as mãos, o que pode interferir na medição.
As ferramentas devem ser de boa qualidade, pois é tão ruim não possuir a ferramenta tanto quanto ter uma de má qualidade e que não corresponda às necessidades.

Lista de Ferramentas necessárias:


1 soldador 30 w, ponteira tipo lápis;
1 multímetro para resistências, VCC, VCA e, se possível, com ganho de transistores:
1 alicate de corte;
1 alicate de bico fino;
1 alicate uso geral;
1 jogo de chaves de fenda e fenda cruzada (philips);
1 morsa pequena;
1 furadeira;
1 jogo de brocas;
1 estilete;
1 laboratório para confecção de Circuitos Impressos (vendidos geralmente em forma de Kit's);
1 Fonte de Alimentação com certa flexibilidade quanto a tensão de saída. Entre outras que o hobbista possa sentir necessidade ao longo do certas monta

OS COMPONENTES MINIATURAS SMD

MD é uma nova tecnologia que tem por objetivo reduzir o espaço ocupado pelos tradicionais componentes (resistências, diodos, transistores e CI's) em certas placas, como as de computadores e outros aparelhos que precisam ser complexos, porém ocupar pouco espaço.
SMD significa dispositvos montados em superfície.
Para a montagem ou a reparação destes dispositivos, devem ser tomadas algumas precauções para não destruí-los: ferramentas e produtos adequados, além de certo conhecimento.
Dois procedimentos básicos para o manuseio de SMD's:

Soldando um novo componente na PCI:

Para fazer a soldagem de um novo componente, deve-se limpar bem a PCI com um papel toalha embebido em álcool e aplicar nela com o ferro de soldar um pouco de solda. A seguir cola-se o componente com uma cola rápida e aplicam-se em seus terminais um fluxo para logo em seguida, só com o soldador e sem aplicar mais solda, aquece-los para a mesma fluir. O processo está pronto.

Removendo um componente da PCI:

Para remover um componente, será preciso um líquido removedor de cola, o qual se aplicará para "derreter" a cola que prendia o dispositivo à PCI. Logo depois com uma malha de cobre e com o soldador, derreta a solda entre o componente e a placa passando-a para a malha e remova o componente da PCI.

Devem-se tomar outras precauções para evitar o destruimento dos SMD's: evitar esquentar demais os componentes, evitar esforços exessivos sobre eles e principalmete usar bons produtos como a solda, que não deve ser muito espessa, bem como a malha de cobre, a cola e o removedor de cola.

OS CAPACITORES

Os Capacitores são componentes que, embora não conduzam corrente elétrica entre seus terminais são capazes de armazenar certa corrente, que será "descarregada" assim que não houver resistência entre seus terminais.
Quanto à sua aparência externa, podem variar de acordo com a tensão máxima, capacitância e disposição de seus terminais: Podem ser do tipo axial, com um terminal em cada extremidade, ou, do tipo radial, com os dois terminais na mesma extremidade.
Classificam-se em vários tipos, de acordo com o uso pretendido. Existem os eletrolíticos que são os mais comuns. Cerâmicos também são encontrados com relativa facilidade, embora existam outros tipos usados em casos específicos, como os de tântalo e os de alumínio.
A sua capacitância é medida em farads. Dependendo do caso, pode ser medida em microfarads, nanofarads ou picofarads, para capacitâncias menores.
São úteis para manter estável, por exemplo uma corrente alterna, como um sinal de audio ou então servem de filtro de baixa (por isso a sua utilização em fontes de alimentação).
Basicamente os condensadores são formados por duas placas condutoras separadas por um material dielétrico não condutor. Sua capacitância é diretamente proporcional ao tamanho de suas placas e inversamente proporcional a distância entre elas.
A energia armazenada em um capacitor é expressa em Joules, sendo calculada dividindo-se sua capacitância por dois e depois multiplicando-a pelo quadrado da tensão entre as placas.

W = C/2 . V²

Na associação paralela de capacitores, a capacidade total será a soma de todas as capacidades.
Na associação em série, o inverso da capacidade total será igual ao inverso da soma das capacidades aplicadas.
A tensão limite de um capacitor deve ser respeitada, a fim de que não haja uma perfuração no dielétrico, causando o estrago do componente. Outro fator a ser observado é a polaridade dos terminais, que não devem ser invertidos no caso dos eletrolíticos.

Símbolo geral dos capacitores: duas placas com seus correspondentes terminais.

TRANSISTORES

Os transistores são dispositivos que possuem duas uniões PN (a mesma dos diodos), capazes de controlar a passagem de uma corrente.
Podem ser de dois tipos, de acordo com as uniões: PNP ou NPN.
Apresentam base, emissor e coletor:
A base é a parte que controla a passagem de corrente; quando a base esta energizada, há passagem de corrente do emissor para o coletor, quando não ha sinal na base, não existe essa condução. A base esquematicamente é o centro do transistor.
O coletor é uma das extremidades do transistor: é nele que "entra" a corrente a ser controlada. A relação existente entre o coletor e a base é um parâmetro ou propriedade do transistor conhecido como ß e é diferente para cada modelo do mesmo.
O emissor é outra extremidade, por onde sai a corrente que foi controlada.
Algumas características que devemos observar nos transístores são: A tensão máxima entre base e coletor, potência máxima dissipável (no caso do seu uso para controle de potência) e frequência máxima de trabalho.
Os transistores podem ter aparência externa completamente diferentes, dependendo da aplicação que se fará dele, por exemplo, um transistor de sinal não possui a mesma aparência externa de um transistor de potência, que controle grandes cargas.

OS DIODOS RETIFICADORES

Os diodos como ja foi visto anteriormente possuem propriedades retificadoras. Mas na verdade o que é que isso significa?
Isso quer dizer que eles só deixam a corrente fluir em um único sentido, sendo o contrário impossível. Essa propriedade dos diodos é largamente utilizada nos retificadores.
Retificadores são artifícios utilizados na eletrônica para transformar a corrente alternada em corrente contínua. Isso pode se dar de diversas maneiras. Seja através de retificadores de meia onda ou de onda completa. Os retificadores de onda completa dividem-se em dois tipos: Os que precisam de tomada central no transformador e os que não necessitam-a.

Retificadores de Meia Onda


Partindo de um transformador simples, basta acrescentar-lhe um diodo para retificar a corrente em meia onda, onde só os semicilos positivos são aproveitados e transformados em uma corrente constante (contínua):

Retificador de Onda Completa

Com o mesmo transformador do exemplo anterior é possível fazer um retificador de onda completa. Sua vantagem é que ele conduz os semiciclos positivos e os negativos, de um modo que haja uma tensão contínua positiva durante os dois semiciclos.
Durane cada semiciclo, sempre dois diodos estão em condução e dois em corte:

Retificador de Onda Completa (trafo com tomada central)

Outro método usado para retificar uma corrente alternada é através de um transformador que possua romada central. Esses transformadores são facilmente encontrados atualmente. Neles estão geralmente gravados "12 V + 12 V", por exemplo, o que indica a tensão e o que não quer dizer que ele seja equivalente a um de 24 V. Para realizar a retificação, basta clocar um diodo em cada um dos terminais e reservar o terminal central para o negativo:

OS DIODOS

s diodos são componentes eletrônicos formados por semicondutores. São usados como semicondutores, por exemplo, o silício e o germânio, que em determinadas condições de polarização, possibilitam a circulação de corrente.
Externamente, os diodos possuem dois terminais: Ânodo (A) e o Catodo (K) e há, próximo ao terminal Catodo uma faixa que o indica. Possui formato cilíndrico.
O diodo é a aplicação mais simples da união PN (semicondutores) e tem propriedades retificadoras, ou seja, só deixa passar a corrente em um certo sentido (Anodo-Catodo), sendo o contrário impossível, exceto nos diodos zener, que nessa condição deixam passar uma tensão constante.
Existem certas variações na sua apresentação, de acordo com a corrente que o percorre. Existem também os diodos emissores de luz, os famosos LED's (light emissor diode), que são representados por um diodo normal mais duas pequenas flechas para fora, que indicam que emite luz. Possuem as mesmas propriedades dos diodos normais, porém, é claro, emitem luz..

QUE SÃO RESISTORES ?

Sendo um dos componentes mais comuns, as resistências geralmente possuem um formato cilíndrico e faixas coloridas que definem o seu valor em Ohms.
As resistências transformam a energia elétrica em térmica através do efeito Joule. Quando a corrente circula por certos materiais ela encontra uma certa oposição à sua passagem e o que ocorre é justamente a transformação da energia.
Para identificar o valor da resistência existe um código universal de cores que utiliza quatro faixas coloridas para indicar um valor.
As duas primeiras faixas correspondem a uma cifra, a qual deve ser multiplicada pelo valor da terceira faixa.
A quarta faixa está um pouco afastada das outras três primeiras e indica a tolerância, ou seja, a precisão daquele componente.

Nesta tabela estão relacionados as cores com os valores que elas representam.

Cor Faixa 1 Faixa 2Faixa 3Faixa 4
Prata - - 0,01 +/-10%
Ouro - - 0,1 +/-5%
Preto 0 0 1 -
Marrom 1 1 10 -
Vermelho 2 2 100 +/-2%
Laranja 3 3 1.000 -
Amarelo 4 4 10.000 -
Verde 5 5 100.000 -
Azul 6 6 1.000.000 -
Roxo 7 7 - -
Cinza 8 8 - -
Branco 9 9 - -

Clique aqui para utilizar um programinha interessante para calcular resistências!

Associação de Resistências

Uma forma de se obter uma resistência de um determinado valor, é se associando resistências, de duas formas: em série e em paralelo.

Associação em Série

Na associação em série, o resultado total (RT) será igual a soma de todas as resistências empregadas:

RT=R1+R2...

Associação em Paralelo

Quando associamos resistências em paralelo, o resultado não será a soma total, mas sim a soma através da seguinte fórmula:

1/RT=1/R1+1/R2...

QUE É CORRENTE ELETRICA?

Corrente Elétrica

A corrente elétrica é um fluxo de elétrons que circula por um condutor quando entre suas extremidades houver uma diferença de potencial. Esta diferença de potencial chama-se tensão. A facilidade ou dificuldade com que a corrente elétrica atravessa um condutor é conhecida como resistência. Esses três conceitos: corrente, tensão e resistênca, estão relacionados entre si, de tal maneira que, conhecendo dois deles, pode-se calcular o terceiro através da Lei de Ohm
Os elétrons e a corrente elétrica não são visíveis mas podemos comprovar sua existência conectando, por exemplo, uma lâmpada a uma bateria. Entre os terminais do filamento da lâmpada existe uma diferença de potencial causada pela bateria, logo, circulará uma corrente elétrica pela lâmpada e portanto ela irá brilhar.
A relação existente entre a corrente, a tensão e a resistência denomina-se Lei de Ohm: Para que circule uma corrente de 1A em uma resistência de 1 Ohm, há de se aplicar uma tensão em suas extremidades de 1V (V=R.I).
O conhecimento desta lei e o saber como aplicá-la são os primeiros passos para entrar no mundo da eletricidade e da eletrônica.

Antes de se começar a realizar cálculos, há que se conhecer as unidades de medida. A tensão é medida em Volts (V), a corrente é medida em Amperes (A) e a resistência em Ohms (ohm)

Unidades Básicas


SímboloUnidade
A ampère (unidade de corrente)
V volt (unidade e tensão)
W watt (unidade de potência)
Ohm Ohm (unidade de resistência)
H henry (unidade de indutância)
F farad (unidade de capacitância)
Hz hertz (unidade de freqüência)

Prefixos para indicar frações ou múltiplos de unidades


Símbolo Fração/Múltiplo
p pico (1 trilionésimo 10E-12)
n nano (1 bilionésimo 10E-9)
µ micro (1 milionésimo 10E-6)
m mili (1 milésimo 10E-3)
k kilo (1 milhar 10E3)
M mega (1 milhão 10E6)
G giga (1 bilhão 10E9)

Calculo Resistores 4 Faixas Cores

Calculo Resistores 4 Faixas Cores
Tipo Resistor
Resistor 4 Faixas





Valor Ω
Tolerancia ± %

Preto
Marrom
Vermelho
Laranja
Amarelo
Verde
Azul
Violeta
Cinza
Branco
Ouro
Prata

Tabela de conversão EIA para resistores de montagem em superfície (SMD)

O QUE É SOLDA FRIA ?

Solda fria é um problema que pode ter varias causas:
Solda de baixa qualidade;
Solda com excesso de chumbo;
Processo de resfriamento da solda deficiente;
Limpeza dos componentes deficiente antes da soldagem ;
Variação de temperatura durante o funcionamento.

A 70% dos defeitos em equipamentos eletrônicos são causados direta ou indiretamente pela solda fria, na maioria das vezes ela é facilmente detectada, mais em casos raros é impossível detectar o defeito devido a pequena rachadura imperceptível a olho nú.

Esse PDF em inglês mostra algumas técnicas de detecção de soldas frias , nele você vai encontrar varios métodos incluso em SMD .

As fontes, osciladores horizontais e DisplayType_G”target=”_blank”rel=”nofollow”title=”Veja preços ou compre amplificador” >amplificadores são principais locais a onde pode aparecer a solda fria, componentes como os transistores e resitores de potência, reles no caso veiculos e qualquer outro componente que tenha um aquecimento relativamente alto.

Os circuitos ao esquentar a solda tende a expandir e ao esfriar ele vai contrair em ritmos diferentes, é inevitável que o ponto mais fraco irá falhar, e essa é a solda ter uma ruptura e causar a solda fria.

Leis de OHM

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgfZzRK_kcLMT1swPJfKYaGkewmWpab8ornxXhSbxmDSTpKoAMI2vzUTza5NJqFMLXd-ECO5MNSASXsbNH9_vmXFfs1Kjv3jpmkTWFsACrqHt2m5Hi8uNBFnNa1ozV4l5Rb_tSrewKh_rE/s320/Ohm3a.jpg

A Lei de Ohm, assim designada em homenagem ao seu formulador Georg Simon Ohm, indica que a diferença de potencial (V) entre dois pontos de um condutor é proporcional à corrente elétrica.

Quando essa lei é verdadeira num determinado resistor,este denomina-se resistor ôhmico ou linear.A resistência de um dispositivo condutor é dada pela fórmula:

R=V/I

V é a diferença de potencial elétrico (ou tensão, ou ddp) medida em Volts
R é a resistência elétrica do circuito medida em Ohms
I é a intensidade da corrente elétrica medida em Ampères.