segunda-feira, 23 de novembro de 2009

QUE É UM RECEPTOR DE COMUNICAÇÃO ?

RECEPTORES DE COMUNICAÇÃO


--------------------------------------------------------------------------------

O QUE É UM RECEPTOR DE COMUNICAÇÃO

Se você já tentou sintonizar uma estação de radioamador em um rádio comum para AM certamente encontrou alguma dificuldade. A intensidade do sinal captado é relativamente fraca, uma vez que a potência de um transmissor de radioamador é bem menor que a potência do transmissor de uma estação de radiodifusão comercial, que gira em torno de 5 kW até mais de 50 kW. Por outro lado, a sintonia de uma estação de radioamador é algo crítico nesse aparelho, pois as faixas destinadas aos amadores são bem mais estreitas, por exemplo a faixa de 40 metros, que vai de 7,0 MHz até 7,3 MHz.

Os fatos mencionados estabelecem as primeiras características técnicas de um receptor de comunicações:

boa sensibilidade - capacidade de receber sinais fracos;

boa seletividade - capacidade de sintonizar estações que transmitem em freqüências bem próximas, além de outras que serão analisadas mais adiante.

Na atualidade, praticamente todos os receptores usados nas estações dos radioamadores são do tipo super-heteródino.

Apesar do princípio básico de funcionamento ser o mesmo entre um receptor comum para radiodifusão (como aquele usado em casa) e um receptor de comunicações, existem algumas diferenças. Um receptor de comunicações é um receptor de rádio comum com certos refinamentos para que possa desempenhar as suas funções adequadamente.

Entre esses refinamentos podemos citar, por exemplo, o amplificador de RF, a dupla conversão, o limitador de ruídos, o silenciador, o indicador de intensidade de sina (ou S METER), o oscilador de batimento (ou BFO), o band-spread (ampliação de faixa), entre outros.

A CONVERSÃO DE FREQÜÊNCIA

O princípio de funcionamento de um receptor super-heterodino é o da conversão de freqüência: o sinal captado pela antena do receptor é misturado com um outro sinal gerado por um circuito especial (o oscilador local) do próprio receptor, e cuja freqüência é um pouco superior à freqüência do sinal sintonizado. Como resultado dessa mistura (batimento) obtém-se um terceiro sinal de freqüência fixa igual à diferença entre as duas anteriores, e que denomina-se freqüência intermediária ou apenas FI.

O AMPLIFICADOR DE RF

Encontramos o circuito amplificador de RF somente em equipamentos de construção mais elaborada, como em alguns tipos de auto-rádios.

Nos receptores de comunicação, a amplificação de radiofreqüência antes do processo de conversão é praticamente obrigatória. O objetivo deste procedimento é conseguir uma elevada sensibilidade e uma alta seletividade, entre outros requisitos; porém, de todos eles o mais importante é a seletividade, conforme veremos mais adiante.

O BAND-SPREAD

Este é o dispositivo específico e exclusivo dos receptores de comunicações.

Num receptor comum de radiodifusão (AM), a faixa de ondas médias vai de 550 kHz a 1600 kHz. Vamos supor que o comprimento dessa escala gravada no mostrador (ou dial) do aparelho seja de 9 cm. Assim, teremos 1600 kHz - 550 kHz = 1050 kHz distribuídos ao longo do mostrador, o que nos permitirá uma sintonia razoavelmente cômoda das estações que operam nesta faixa.

Ainda nesse receptor, vamos imaginar que a faixa de ondas curtas vá de 6 MHz a 18 MHz. Neste caso, teremos 18 MHz - 6 MHz = 12 MHz (ou 1200 kHz) distribuídos ao longo dos mesmos 9 cm. Como é fácil notar, aqui a sintonia das estações se torna um pouco crítica, pois a largura da faixa sintonizada é muito maior (12 MHz) para um mesmo comprimento da escala (9 cm). E se quisermos sintonizar a banda de 40 m, a dificuldade aumenta, pois seremos obrigados a explorar os 300 kHz (de 7000 kHz a 7300 kHz) em 3 ou 4 mm da escala.

Como vemos, torna-se necessário empregar algum método que permita abrir ou ampliar mais a faixa, de modo que possamos sintonizar, por exemplo, o espectro de 300 kHz da faixa de 40 m ao longo de todo o dial.

Um dos processos utilizados para esse fim consiste em usar um capacitor variável (de pequeno valor) ligado em paralelo com o capacitor variável de sintonia principal (tanto no circuito de antena como no circuito de oscilador local). Este sistema requer o emprego de dois mostradores. Um deles, correspondente ao variável de sintonia principal, possui as escalas gravadas com as freqüências das diversas faixas cobertas pelo receptor. O outro, correspondente ao variável de ampliação de faixa (ou band-spread) normalmente possui a escala dividida em 100 partes.

O band-spread é usado em conjunto com o variável de sintonia principal, e permite separar as estações que estejam muito próximas no mostrador principal.

Muitos receptores de comunicação para uso exclusivo dos radioamadores já são projetados com as faixas ampliadas, mesmo assim possuem o band-spread.

FREQÜÊNCIA-IMAGEM

Nos receptores de comunicação o problema da freqüência-imagem é muito importante. Portanto analisaremos mais detalhadamente tal fenômeno.

Como dissemos, a freqüência do sinal resultante da conversão (sinal de FI) é igual à diferença entre a freqüência do sinal do oscilador local e a freqüência do sinal captado pela antena. Em geral, a freqüência do sinal gerado pelo oscilador local é maior do que a do sinal sintonizado. Mas se for menor, o receptor super-heteródino também funcionará, desde que a diferença mencionada seja a mesma à da FI do aparelho.

Vamos imaginar que dispomos de um receptor cuja FI é de 100 kHz. Com ele desejamos ouvir as estações de radioamadores que operam na banda de 40 metros.

Se sintonizarmos uma estação que esteja transmitindo em 7040 kHz, por exemplo, o oscilador local do receptor irá trabalhar em 7140 kHz. Como resultado teremos um sinal de 7140 kHz - 7040 kHz = 100 kHz, que é a FI do aparelho, portanto ele será amplificado no estágio de FI, detectado, novamente amplificado no estágio de AF e finalmente reproduzido pelo alto-falante.

Caso nesse instante haja uma outra estação transmitindo em 7240 kHz, e admitindo que a seletividade do circuito de antena não seja tão aguda, de modo que ele consiga chegar até o misturador, o sinal de 7240 kHz irá misturar-se com o de 7140 kHz do oscilador, resultando um sinal de FI, pois: 7240 kHz - 7140 kHz = 100 kHz.

Em resumo, quando o receptor está sintonizado em 7040 kHz, além da emissora que transmite nesta freqüência, também escutaremos o sinal da estação que opera em 7240 kHz (a segunda emissora irá interferir na primeira). Neste exemplo, o sinal de 7240 kHz recebe o nome de sinal-imagem e a sua freqüência denomina-se freqüência-imagem.

Observe também que no exemplo dado, o sinal-imagem será ouvido em duas situações: a primeira quando o receptor estiver sintonizado em 7040 kHz e a segunda quando o aparelho for sintonizado nos próprios 7240 kHz, pois neste caso, o oscilador local irá trabalhar em 7340 kHz, resultando: 7340kHz - 7240 kHz = 100 kHz (FI).

É importante frisar que a freqüência-imagem sempre é igual à freqüência do sinal sintonizado mais duas vezes o valor da FI. No exemplo dado, 7240 kHz = 7040 kHz + 2 x 100 kHz + 200 kHz .

Num receptor comum de AM, que disponha de faixas de ondas curtas (entre 6 MHz e 18 MHz por exemplo), é bem fácil observarmos o problema ora analisado.

Em primeiro lugar, devemos conectar uma boa antena ao aparelho. Um simples fio estendido, com um comprimento de 12 m a 15 m, já é o suficiente.

A seguir sintonizamos o aparelho por volta de 6200 kHz (ou 6,2 MHz), um pouco acima da rádio Bandeirantes (49 metros). Nessa região do dial, fatalmente iremos escutar alguma estação de radioamador. Se "subirmos" a sintonia do receptor até aproximadamente 7110 kHz (ou 7,11 MHz), voltaremos a escutar a mesma estação de radioamador, agora com maior intensidade.

Observe que o lugar correto da emissora de radioamador, no dial do aparelho, é de 7110 kHz e não em 6200 kHz. Mas como a seletividade do circuito de antena do receptor não é muito aguda, quando o aparelho está sintonizado em 6200 kHz ocorre que o sinal de 7110 kHz também consegue entrar no conversor, apesar de relativamente atenuado. Por outro lado, lembrando que a FI do receptor é de 455 kHz, portanto, 6200 kHz + 2 x 455 kHz = 6200 kHz + 910 kHz = 7110 kHz.

Em outras palavras, o sinal de 7110 kHz aparece como sinal-imagem e pode causar interferências quando o receptor está sintonizado em 6200 kHz.

Para os receptores comuns de radiodifusão (AM) na faixa de ondas médias, o problema da freqüência-imagem praticamente não existe. Como nesses aparelhos a FI é de 455 kHz, o sinal-imagem cai fora dessa faixa. Já nas faixas de ondas curtas, esse problema é sentido mais de perto, pois as freqüências sintonizadas são mais altas.

Uma solução para evitar tal problema seria aumentar o valor da FI. Com isso o sinal-imagem ficaria mais distanciado do sinal sintonizado, e a própria seletividade do circuito de antena encarregar-se-ia de atenuá-lo o suficiente, de modo a evitar que esse sinal-imagem chegasse até o misturador. Entretanto, se aumentarmos o valor da FI perdemos em sensibilidade, pois o ganho do estágio de FI é maior em freqüências baixas.

Em vez de aumentar muito o valor da FI nos receptores de comunicação o problema é resolvido elevando-se a seletividade dos circuitos prévios ao conversor. Aqui vemos a necessidade do estágio amplificador de RF antes do conversor nesse tipo de receptor.

O PROCESSO DA DUPLA CONVERSÃO

Uma outra maneira de se eliminar o sinal-imagem consiste em utilizar duas vezes o processo da conversão de freqüência. Este procedimento denomina-se dupla conversão. Com ele conseguimos melhorar bastante a seletividade do aparelho, daí o seu largo emprego nos receptores de comunicação.

O processo consiste em obter, pelo batimento do sinal sintonizado no circuito de antena com o sinal gerado no 1.º oscilador local, uma FI de valor alto. Em seguida, há um novo batimento entre essa FI elevada e o sinal gerado pelo 2.º oscilador local, resultando numa outra FI, mas agora de valor baixo.

Na primeira etapa desse processo conseguimos uma boa rejeição do sinal-imagem porque empregamos uma FI elevada (4,6 MHz por exemplo). E na segunda etapa, como usamos uma FI baixa (455 kHz por exemplo), ganhamos bastante em sensibilidade.

Nos receptores que empregam a dupla conversão, geralmente a sintonia é feita com um capacitor variável de três seções, unicamente na primeira conversão. A seção "Ca" desse capacitor é usada na sintonia do circuito de antena, a seção "Co" na sintonia do circuito do oscilador local e, por fim, a seção "Cc" é utilizada na sintonia do circuito que acopla a saída do amplificador de RF com a entrada do 1.º misturador. Daí em diante (até a saída do amplificador de FI) todas as demais sintonias são fixas, isto é, uma vez ajustados os circuitos sintonizados, não tocamos mais neles.

Uma outra característica da dupla conversão é que, em geral, o 2.º oscilador local trabalha numa freqüência fixa, o que proporciona uma grande estabilidade de freqüência. Para isso, o 2.º oscilador local emprega um cristal de quartzo, pois este componente é utilizado nos osciladores de freqüência fixa proporcionando grande estabilidade de freqüência.

Para entendermos melhor o processo de dupla conversão, vejamos um exemplo prático:

Vamos supor que o sinal sintonizado e captado pela antena seja de 7200 kHz; depois de passar pelo amplificador de RF, ele estará presente na entrada do 1.º misturador. Ao mesmo tempo, na entrada do 1.º misturador também estará presente o sinal gerado pelo 1.º oscilador local, cuja freqüência vale, nesta situação, 11800 kHz. Do batimento entre esses dois sinais resultará o 1.º sinal de FI em: 11800 kHz - 7200 kHz = 4600 kHz (freqüência fixa).

O AMPLIFICADOR DE FI

Num receptor de comunicação o estágio amplificador de freqüência intermediária reveste-se de grande importância, já que dele dependem, em grande parte, a seletividade e a sensibilidade totais do aparelho.

Em geral, o estágio amplificador de FI é constituído por dois ou três circuitos ligados em cascata, dependendo da categoria do receptor de comunicação.

A diferença básica entre os amplificadores de FI dos receptores comuns de radiodifusão e aqueles utilizados nos receptores de comunicação relaciona-se com a faixa passante.

Nas estações de radiodifusão, a freqüência máxima do sinal modulador é limitada em 5 kHz, a fim de se obter uma reprodução razoável dos programas musicais. Por outro lado, nas estações de comunicação geral (como as de radioamadores), a freqüência máxima do sinal modulador é fixada, por norma, em 3 kHz.

Nos receptores, o canal de FI deve permitir a passagem das duas faixas laterais produzidas pelo sinal modulador. Assim, num receptor de radiodifusão a faixa passante (ou largura de faixa) do amplificador de FI vale 10 kHz (5 kHz de cada lado da freqüência central). Por outro lado, num receptor de comunicação a faixa passante vale 6 kHz (3 kHz de cada lado da freqüência central).

DETECTOR DE CAG

O circuito detector de AM usado nos receptores de comunicação é do tipo convencional a diodo.

A tensão CC negativa (ou positiva, conforme o caso) resultante da "retificação e filtragem" do sinal obtido na saída do amplificador de FI é a tensão do CAG. Nos receptores de comunicação com dupla conversão, essa tensão CC do CAG comanda automaticamente o ganho do amplificador de FI e do 2.º misturador, na maioria das vezes.

Nos receptores de comunicações, o ganho do amplificador de RF é geralmente controlado manualmente, e não pela tensão do CAG. Esse controle é comumente denominado ganho de RF (RF gain), ou controle de sensibilidade.

Nos circuitos valvulados, o controle de sensibilidade é um simples potenciômetro ligado entre a massa e o cátodo da válvula amplificadora de RF.

Nos receptores comuns de radiodifusão, o usuário não tem acesso ao CAG. Já nos receptores de comunicação existe um interruptor que permite, ao operador, desligar o CAG. Essa operação normalmente é feita durante a recepção de estações telegráficas.

LIMITADOR DE RUÍDOS

Muitas vezes o sinal captado pela antena do receptor vem acompanhado de uma certa quantidade de ruído provocado por descargas elétricas, motores elétricos, sistemas de ignição de automóveis, etc. O ruído superpõe ao sinal útil, dificultando o entendimento da mensagem recebida. Deste modo, o uso de um limitador de ruído, num receptor de comunicações, é quase obrigatório.

No receptor de comunicação, o limitador de ruído vem conjugado com um interruptor, de forma a permitir que o circuito seja colocado em ação quando houver necessidade.

O AMPLIFICADOR DE AF

Num receptor comum de radiodifusão (AM), a faixa de passagem do amplificador de AF estende-se desde 50 Hz até 5kHz, aproximadamente. Nos receptores de FM, essa faixa vai até os 15 kHz ou um pouco mais. Com tal procedimento, consegue-se uma boa fidelidade na reprodução tanto da voz como da música. Além disso, a etapa de saída do amplificador de áudio é projetada para fornecer a máxima potência sem distorção no alto-falante.

Num receptor de comunicação, a mensagem recebida é constituída da voz (fonia) ou de sinais em código morse (telegrafia), de modo que não é necessária uma fidelidade muito alta. Nos receptores desse tipo, a faixa de passagem do amplificador de AF vai de 300 Hz a 3 kHz, o que garante uma boa inteligibilidade. Por outro lado, a etapa de saída é projetada para uma potência bem menor (em geral de 3W a 6W), apenas o suficiente para excitar o alto-falante ou o fone de ouvido.

A maioria dos receptores para radioamadores inclui um jaque de fone de ouvido. Encaixando-se o plugue nesse jaque o alto-falante fica fora do circuito, funcionando apenas o fone de ouvido. Este procedimento é muito útil quando se escutam estações distantes ou quando não se quer molestar os vizinhos com o som produzido pelo alto-falante.

Todo receptor de comunicação está projetado para um certo tipo de fone, normalmente de alta ou baixa impedância. Os de alta impedância são, em geral, de 10 kW ou mais; os de baixa impedância normalmente são de 80 kW ou 40 kW. Em qualquer caso, para se obter os melhores resultados é aconselhável usar o tipo correto de fone, recomendado pelo fabricante do receptor.

Em muitos receptores de comunicação, o alto-falante é instalado numa pequena caixa à parte. Quanto maior seu tamanho, melhor a qualidade sonora. Os fabricantes de receptores comumente especificam o tamanho (diâmetro, em polegadas) e a potência do alto-falante requerido.

Quanto aos controles do amplificador de AF, volume (ou ganho de áudio) e tonalidade - este pode ser de variação sem escalões (ou graus) ou de variação contínua - constituem um refinamento não essencial ao perfeito desempenho do aparelho.

O ESSÍMETRO

A denominação ESSÍMETRO vêm do inglês signal strenght meter e significa medidor de intensidade de sinais. É também conhecido como s-meter e medidor de s.

Trata-se de um dispositivo que proporciona uma indicação visual, mas relativa, da intensidade dos sinais captados pelo receptor. Essa indicação quase sempre se obtém por meio de um medidor de bobina móvel, cuja escala está graduada de acordo com um código preestabelecido (unidade "S").

O essímetro é usado como "indicador visual de sintonia", indicando o ponto correto de sintonia de uma determinada estação: nesse ponto, a deflexão do ponteiro do medidor é máxima.

Em geral, para se estabelecer comparações exatas dos sinais recebidos, é necessário que o controle de ganho de RF do receptor esteja todo aberto (virado para a direita) quando este controle existir. Somente assim as indicações do medidor serão corretas.

O BFO

Um receptor comum de AM não é capaz de reproduzir os sinais telegráficos do tipo A1 (onda portadora interrompida), uma vez que esses sinais não possuem nenhuma modulação.

Para que seja possível a recepção de sinais em código morse, do tipo A1, ao receptor de AM deve ser incorporado um oscilador de freqüência de batimento (ou BFO). Trata-se de um simples circuito oscilador que gera um sinal de freqüência próxima à freqüência do sinal da 2.ª FI do receptor. Da mistura desses dois sinais, no detector, resulta um sinal de áudio que é reproduzido no alto-falante. A freqüência de tal oscilador pode ser variada dentro de certos limites, até que se obtenha um tom agradável (por volta de 1 kHz).

FONTE DE ALIMENTAÇÃO

Nos receptores de comunicação a fonte de alimentação normalmente possui um transformador de energia, o qual fornece os diversos valores de tensão e corrente adequados aos circuitos do aparelho.

A retificação da tensão CA da rede elétrica, em geral, é obtida do tipo de onda completa, onde são utilizados diodos retificadores ou pontes retificadoras de silício.

O sistema de filtragem de uso mais comum é o do tipo RC. O seu emprego é altamente vantajoso devido ao custo relativamente baixo e ao nível de ondulação (ripple), perfeitamente tolerável neste tipo de aparelho.

A maioria dos receptores para radioamadores possui uma chave comutadora de duas posições (transmissão/recepção) que funciona como stand-by. Quando ela está na posição transmissão, o receptor não funciona, pois a chave desliga a alimentação do +B do aparelho; nos receptores valvulados, os filamentos permanecem ligados. Quando na posição recepção, o receptor funciona normalmente, pois a chave liga o seu +B.

A utilização dessa chave comutadora é necessária para evitar que o receptor capte os sinais emitidos pelo transmissor da própria estação de radioamador.

DIAGRAMA EM BLOCOS DE UM RECEPTOR DE COMUNICAÇÃO

Em linhas gerais, o funcionamento do aparelho resume-se no seguinte: o sinal sintonizado sofre uma primeira conversão, de onde se obtém um sinal de FI de alto valor. Em seguida, ocorre uma segunda conversão, resultando um sinal de FI de baixo valor. Este sinal então é amplificado adequadamente, para logo após ser detectado. Na saída do detector teremos apenas o sinal de AF (correspondente à informação transmitida). Depois de passar pelo limitador de ruído, quando necessário, o sinal de AF também é simplificado para finalmente ser reproduzido pelo alto-falante do aparelho.

O circuito CAG fornece a tensão CC necessária para comandar o ganho do amplificador de FI e do segundo misturador. Além disso, a tensão do CAG também é utilizado no funcionamento do essímetro, uma vez que ela é diretamente proporcional à intensidade do sinal captado pelo receptor.

Na recepção de sinais telegráficos (A1), o BFO gera um sinal de RF com valor próximo ao da segunda FI, com o que é possível demodular aqueles sinais.

Por fim, temos a fonte de alimentação, que fornece as tensões necessárias ao funcionamento dos diversos circuitos do receptor.


--------------------------------------------------------------------------------

FALANDO DE ONDAS CURTAS

NAVEGUE NAS ONDAS CURTAS DO RÁDIO ARTIGOS TÉCNICOS DX ENVIE SEUS COMENTÁRIOS PROCURE NESTE SÍTIO
Tipos de interferência que afetam a recepção


INTRODUÇÃO
PANORAMA DAS RADIO INTERFERÊNCIAS E INTERCEPTAÇÕES
INTERFERÊNCIA ELETROMAGNÉTICA ( EMI / RFI )
ALGUMAS PRÁTICAS ÚTEIS
EXEMPLOS DE CASOS REAIS
GLOSSÁRIO


--------------------------------------------------------------------------------

INTRODUÇÃO

Infelizmente, são poucos os radio escutas que nunca se deparam com fortes ruídos no seu receptor, nitidamente provenientes de fontes geradas pelo homem. Em especial, nos grandes centros urbanos, onde estão as principais fontes potenciais de interferências e geração de ruído elétrico, este problema se acentua.

O objetivo é demonstrar de forma prática as principais fontes de interferência para que se possa extrair ao máximo da pratica de radio escuta. Como pode-se constatar, a eliminação dos ruídos é muito complicado, não só pelos aspectos técnicos, mas principalmente pela viabilidade do processo, seja financeiro ou logístico.

Como regra geral, a melhor forma de diminuir os ruídos elétricos que tanto causam transtornos para as escutas, é a construção de antenas bem dimensionadas e principalmente, posicionadas adequadamente, naturalmente, o mais longe possível das fontes interferentes. Como exemplo de um dos processos que inviabiliza a eliminação dos ruídos, é a ausência de espaço físico para o correto posicionamento da antena quando se mora em apartamentos ou em determinados condomínios.

De qualquer forma, é importante conhecer um pouco deste tema, pois algumas ações são perfeitamente possíveis, o que pode fazer a diferença entre se ouvir um sinal audível de uma emissora desejada, ou apenas irritantes ruídos. Existem excelente literatura disponível sobre o assunto, porém, a maioria no idioma inglês. No Brasil temos o Handbook do Radioamador publicado pela Edusp, que trata desta questão de forma conceitual e aborda as interferências causadas pelas estações de radio amador. Também, o Handbook do Radio Amador do ARRL ( liga norte americana de radio amadores ), é uma ótima fonte de informações.




PANORAMA DAS RADIO INTERFERÊNCIAS E INTERCEPTAÇÕES

As radio interferências existem há centenas de milhares de anos; todavia, somente desde a existência do rádio, há aproximadamente 80 anos, tomamos conhecimento delas. No decorrer dessas oito década, elas se tornaram fontes de irritação e de aborrecimentos a muitos usuários de equipamentos eletrônicos do mundo inteiro. Para uma radio interferência produzir efeitos maléficos, são necessários dois agentes : um que produz e outro que intercepta. Quando a interferência é proveniente da natureza, só há um aborrecido : quem a intercepta. Quando ela tem, porém, origem tecnológica, pode causar problemas tanto para o produto quanto para o interceptor. Neste ultimo caso, como cada equipamento funciona bem sozinho, porém apresenta problemas quando está próximo de outro, adotou-se a expressão "incompatibilidade eletromagnética". Essa expressão engloba a emissão de ondas não essenciais e a interceptação indevida das que são consideradas essenciais para outras estações.

O produtor da interferência tecnológica não é sempre um transmissor de rádio. Ele pode ser uma linha de alta tensão com fuga, um motor universal sem supressor, uma fabrica com aquecimento dielétrico, um ambulatório com diatermia, algumas lâmpadas fluorescentes, ou mesmo um mau contato de fios de cobre, com superfícies oxidadas. Por este motivo, é apresentada uma tabela mais ampla da problemática de interferências, classificando-as conforme suas origens, gêneros e manifestações, indicando em seguida exemplo típicos e as soluções indicadas, quando houver.

Quando falamos de interferências radio elétricas, em seu sentido mais restrito, geralmente referimo-nos às que aparecem em receptores de sinais de sons, imagens, ou outras informações, ou até em equipamentos domésticos de áudio freqüência, em conseqüência de irradiações de radio freqüências destinadas a transmitir sons, imagens os outras informações.

Quando se trata de incorporação de filtros em equipamentos de recepção e de sonorização, o primeiro contra-argumento costuma ser o custo presumido desses dispositivos.

Gêneros
Exemplos
Soluções Viáveis

Radio interferências de origem natural Relâmpagos, descargas atmosféricas inibidores de picos ( noise blankers ) nos receptores

Radio interferências de origem tecnológica

Radio interferência causada por dispositivos de baixa freqüência

Motores com escovas e outros dispositivos com faiscamento Supressores resistivos nos motores; inibidores de picos ( noise blankers ) nos receptores
Ignição de motores de combustão Supressores resistivos nos motores; inibidores de picos ( noise blankers ) nos receptores
Fugas em redes de distribuição de energia elétrica Localização e eliminação de fugas
Equipamentos digitais ( ruído branco ) Blindagens, capacitores supressores na linha de alimentação
Iluminação com gás ionizado. Iluminação com dimmer Capacitores supressores na linha de alimentação

Radio interferência causada por dispositivo de alta freqüência não relacionado com telecomunicação Aquecimento dielétrico industrial, aquecimento indutivo industrial, aparelho de diatermia Blindagens, filtros de RF na linha de alimentação

Radio interferências originadas de dispositivos de telecomunicações

Interferências ativas Harmônicos, transientes ( manipulação telegráfica ), oscilações parasitas, espalhamento por excesso de modulação e outros espúrios ( estágios multiplicadores ) Filtros de rejeição, filtros passa-faixa,, filtros passa-baixas e filtros passa-altas

Interferências passivas. Elementos não lineares Oxidação em ligação elétrica, corrosão em encanamento, reles de antenas oxidados, antena de TV corroída e reforçador de sinais transistorizado abandonado Localização da fonte passiva de interferência por meio de instrumental e eliminação dos pontos de retificação

Interferência por interação Radio Federal 2 x 760 kHz, menos Radio MEC 800 kHz, igual Radio Carioca 720 kHz Mudança da Radio Carioca para 710 kHz

Suscetibilidade para radio interferências

Equipamentos não relacionados com radiofreqüências Amplificadores de alta fidelidade, toca discos, gravadores, órgãos eletrônicos, sistemas de sonorização, telefones Capacitores de bloqueio, reatores, anéis de ferrita, melhoria de blindagem

Equipamentos de telecomunicações Receptores de radio e receptores de televisão Filtros de rejeição, filtros passa-faixa, filtros passa-altas, filtros passa-baixas, evitar modulação cruzada por sobrecarga, filtragem de RF na alimentação de energia elétrica, melhoria de blindagem, realocação de antena, proteção à linha de transmissão. EM HF : melhor aterramento



Em destaque, os isoladores e o corpo principal do transformador

Exemplo de fonte inesgotável de interferência elétrica. Um caso típico de geração de interferência de RF a partir de 60 Hertz até VHF. Especialmente quando há falhas nas placas internas e centelhamento nos isoladores, devido a falhas de manutenção e problemas de qualidade nos materiais utilizados.


Em destaque, as torres da rede elétrica e de RF

Um problema típico das grandes cidades, em especial nos locais próximos as torres de transmissão de emissoras de televisão e radio difusão. A sobrecarga de RF aliado a problemas de ajustes nos transmissores e antenas, gera dificuldades de recepção nas ondas curtas. Isto requer a construção de antenas adequadas e receptores de ótima qualidade, com excelente seletividade de front-end, rejeição de imagens, processamento digital de sinais e outra caracterísitcas. E também, para amenizar os ofensores à escuta das ondas curtas, pode-se utilizar filtros passa-baixas ou passa-altas, antenas loop e etc. Mais informações sobre caracterísitcas técnicas de receptores acesse a página de Artigos Técnicos.

INTERFERÊNCIA ELETROMAGNÉTICA ( EMI / RFI )

O conhecimento é uma dos mais valiosas ferramentas para solucionar problemas de EMI. Um cura bem sucedida de EMI geralmente requer familiaridade com a tecnologia relevante e procedimentos de diagnóstico.

Vitima de Caminho-Fonte

Todos os casos de EMI envolvem uma fonte de energia eletromagnética, um dispositivo que responde a esta energia ( vítima ) e um caminho de transmissão que permite a energia fluir da fonte à vitima. Algumas das principais fontes estão relacionadas na tabela acima. Existem três caminhos que a EMI pode viajar da fonte à vitima : irradiação, condução e indução. A EMI irradiada se propaga por irradiação a partir da fonte, através do espaço para a vitima. Um sinal conduzido viaja através de fios conectados à fonte e a vitima. A indução ocorre quando dois circuitos estão magneticamente acoplados. A maioria do EMI ocorre através de condução, ou alguma combinação de irradiação e condução. Por exemplo, um sinal é irradiado pela fonte e captado por um condutor anexado à vitima ( ou diretamente pelo circuito da vitima ) e é então conduzido para dentro da vitima. A EMI por indução é rara.

Modo Diferencial vs. Comum

É importante entender as diferenças entre os sinais conduzidos de modo-diferencial e modo-comum. Cada um destes modos de condução requerem curas de EMI diferentes. As curas para modo-diferencial, ( o típico filtro passa-alta, por exemplo ), não atenuam sinais de modo-comum. Por outro lado, um "choke" típico de modo-comum não afeta a interferência resultante de um sinal de modo-diferencial.

As correntes de modo diferencial geralmente apresentam dois condutores facilmente identificáveis. Em uma linha de transmissão de dois fios, por exemplo, o sinal deixa o gerador em uma linha e retorna pela outra. Quando os dois condutores estão muito próximos, eles formam uma linha de transmissão e existe uma diferença de fase de 180° entre seus respectivos sinais. É relativamente simples construir um filtro que passe os sinais desejados e eliminam sinais não desejados para a linha de retorno. A maioria dos sinais desejados, tais quais os sinais de TV dentro de um cabo coaxial são sinais de modo diferencial.



Em um circuito de modo-comum, muitos fios de um sistema multi fios agem como se eles fossem um único fio. O resultado pode ser uma boa antena, tanto como irradiadora ou como um receptor de energia não desejada. O caminho de retorno é geralmente o aterramento da Terra. Desde que a fonte e os condutores de retorno são geralmente bem separados, não existe nenhuma diferença de fase confiável entre os condutores e nenhum lugar conveniente para drenar ( shunt ) os sinais não desejados. Os choques toróides são a resposta para a interferência de modo-comum. A explicação a seguir se aplica a núcleos de bastão assim como toróides, mas desde que os núcleos de bastão podem se acoplar com circuitos próximos, use-os apenas como ultimo recurso.



Os toróides trabalham diferentemente, mas igualmente bem, com cabos coaxiais e condutores em pares. Um sinal de modo-comum em um cabo coaxial é geralmente um sinal que está presente no lado de fora do cabo blindado. Quando enrolamos o cabo ao redor de um núcleo de ferrite toróide o choque se apresenta como uma reatância em serie com o lado de fora da blindagem, mas não tem nenhum efeito nos sinais dentro do cabo por causa que seu campo é ( idealmente ) confinado dentro da blindagem. Como condutores de pares tais quais cabos-paralelos, os sinais com fase oposta estabelecem fluxos magnéticos de fase opostas no núcleo. Estes fluxos "diferenciais" cancelam entre si, e não existe nenhuma reatância em rede para o sinal diferencial. Para sinais de modo-comum, entretanto, o choque aparece como uma reatância em serie com a linha.

Os choques de toróide trabalham pior com cabos de condutor único. Devido a não existir nenhuma corrente de retorno para estabelecer um fluxo de cancelamento, o choque se apresenta como uma reatância em serie com ambos o sinais desejados e não desejados.

Fontes de EMI

As causas básicas de EMI podem ser agrupadas em diversas categorias :

efeitos de sobrecarga fundamental

ruído externo

emissões espúrias de um transmissor

distorção de intermodulação ou outro sinal espúrio externo

Como um investigador de EMI, você deve determinar quais destes estão envolvidos no seu problema de interferência. Uma vez que você o faça, será mais fácil selecionar a cura necessária.

Sobrecarga Fundamental

A maioria dos casos de interferência são causados por sobrecarga fundamental. O mundo está repleto de sinais de RF. Os equipamentos adequadamente projetados devem ser capazes de selecionar o sinal desejado, enquanto rejeitam todos os outros. Infelizmente, devido a deficiências de projeto tais quais blindagens inadequadas ou filtros, alguns equipamentos são incapazes de rejeitar sinais fortes fora da faixa.

Um sinal fundamental forte pode entrar no equipamento de diversas formas diferentes. O Mais comum, é ser conduzido para dentro por fios conectados a este. Condutores possíveis incluem antenas e linhas de alimentação, cabos de interconexão, transmissão de potencia e cabos de terra. As antenas de TV e linhas de alimentação, telefones ou cabeamento de alto falantes e cabos de AC são os pontos mais comuns de entrada.

O efeito de um sinal interferente está diretamente relacionado a sua intensidade. A intensidade de um sinal irradiado diminui com o quadrado da distancia de sua fonte : quando a distancia da fonte dobra, a intensidade do campo eletromagnético decai a um quarto de sua intensidade na distancia original a partir da fonte. Esta característica pode algumas vezes ser usada para ajudar a resolver casos de EMI. Você pode algumas vezes fazer melhorias significativas através da mudança do equipamento vitima e da antena longe entre si.

Ruído externo

A maioria dos casos de interferência reportado envolvem algum tipo de fonte externa de ruído. O mais comum destes ruídos são elétricos. Os ruídos externos também podem vir de transmissores ou fontes não licenciadas de RF tais como computadores, jogos de vídeo, repelente de ratos eletrônico e outros mais. O ruído elétrico é regularmente fácil de identificar através da observação da figura de uma TV suscetível ou da escuta de um receptor de OC. Em um receptor, é geralmente um som parecido a um zumbido, algumas vezes mudando de intensidade conforme o arco ou fagulha "estalam" - se alteram. Se você determina que o problema é causado por ruído externo, isto deve ser curado na fonte.

Emissões Espúrias

Todos os transmissores geram alguns ( espera-se que poucos ) sinais de RF fora de suas freqüências alocadas. Estes sinais fora de faixa são chamados de emissões espúrias. As emissões espúrias podem ser sinais discretos ou ruído de banda larga. Harmônicos, são sinais em múltiplos exatos da freqüência de operação ( ou fundamental ).Outros sinais espúrios discretos são geralmente causados pelo processo de mistura super heteródino usado na maioria dos modernos receptores. Os transmissores também podem produzir ruído de banda larga e/ou oscilações parasitas. Se estes sinais indesejados causam interferência a outros serviços de radio, os órgãos regulatórios devem requerem aos seus proprietários que corrijam o problema.

Diagnosticando EMI

A maioria dos casos de EMI são complexos. Envolvem uma fonte, um caminho e uma vitima. Cada um destes componentes principais tem um grande números de variáveis : O problema é causado por harmônicos, sobrecarga fundamental, emissões conduzidas, emissões irradiadas ou uma combinação de todos estes fatores ? Deve ser atenuado com filtro passa-baixa, passa-alta, choques de modo-comum ou com filtro de linha de AC ? Como está a blindagem, transformadores de isolamento, um terra diferente ou configuração de antena ? Você provavelmente não verá seu problema exato e a cura listada em nenhum lugar. Mas deve ser importante diagnosticar o problema !

ALGUMAS PRÁTICAS ÚTEIS

Blindagens

As blindagens são usada para determinar fronteiras para a energia irradiada. Filmes finos condutivos, cobre trançado e folhas de metal soa os materiais de blindagem mais comuns. A efetividade máxima da blindagem geralmente requer folhas de metal sólido que encapsula completamente a fonte ou o circuito suscetível ou equipamento. Pequenas descontinuidades, tais quais buracos ou fendas, diminuem a efetividade da blindagem. Adicionalmente, as superfícies em contato entre as diferentes peças devem ser condutoras.

Filtros

O significado maior da separação de sinais se baseia nas suas diferenças de freqüência. Os filtros oferecem pouca oposição para certas freqüências enquanto bloqueiam outras. Os filtros variam em características de atenuação, características de freqüência e capacidade de manipular potencias diferentes. Os nomes dados aos vários filtros são baseados nos seus usos.

Os filtros de passa-baixa passam as freqüências abaixo de alguma freqüência de corte, enquanto atenuam freqüências acima desta. O esquema de um filtro deste tipo está representado abaixo :



Os filtros de linha de AC, algumas vezes chamados de filtros de "força bruta", são usados para filtrar energia de RF das linhas de potencia de alimentação. O esquema é o filtro de passa-baixa mostrado anteriormente.

Estes filtros devido a complexidade de sua construção, em especial quanto a confecção dos indutores e da blindagem da caixa, devem ser adquiridos prontos. Diversas indústrias especializadas fabricam filtros de linha para todos as aplicações industriais, que são os mais recomendados para uso em casa, na alimentação dos receptores de OC.

Os capacitores de bypass podem ser usados para curar problemas de EMI. Este capacitor é geralmente colocado entre o sinal ou cabo de alimentação e o circuito terra. Prove um caminho de baixa impedância para a terra de sinais de HF. Os capacitores de bypass são geralmente de 0.001 μF, enquanto para VHF são usados geralmente 0.001 μF.

Choques de Modo Comum

Os choques de modo comum podem ser o mais guardado segredo entre os radioamadores em especial. Os filtros de modo diferencial descritos anteriormente não são efetivos contra sinais de modo comum. Para eliminar adequadamente sinais de modo comum, você precisa de choques de modo-comum. Eles podem ajudar praticamente em qualquer problema de interferência, desde TV a cabo a telefones, quanto a interferência de áudio causada por RF captada nos cabos dos alto falantes.

Os choques de modo comum, geralmente tem materiais de núcleo de ferrite. Estes materiais são bem adequados para atenuar correntes de modo comum. O tamanho ótimo e o material de ferrite são determinados pela aplicação e freqüência. Por exemplo, um cabo AC de alimentação com um conector acoplado não pode ser facilmente enrolado em um pequeno núcleo de ferrite. As características dos materiais do ferrite variam com a freqüência.



Exemplos de ferrite para confecção de choques

Aterramento

Um terra elétrico não é uma grande pia que de alguma forma suga todo o ruído e sinais indesejados. Terra é um conceito de circuito, se o circuito é pequeno, que nem um receptor de radio, ou largo, que nem o caminho de propagação entre o transmissor e a instalação de TV a cabo. O terra forma um ponto de referencia universal entre os circuitos. Enquanto o terra não é a cura para todos os problemas de EMI, o terra é um importante componente de segurança de qualquer instalação elétrica. É parte do sistema de proteção contra raios nas estações de radio amadores e radio escutas que mantêm antenas externas, e um componente critico de segurança para o cabeamento elétrico das residências. enquanto que o aterramento dos equipamentos podem curar alguns problemas de EMI - em especial quando aplicado a transmissão por radio amadores - não é a cura para todos os males conforme sugerido em algumas literaturas técnicas. Um aterramento é relativamente fácil de se instalar e deve reduzir correntes harmônicas e ruídos elétricos no cabo de alimentação da antena; é desta forma uma valiosa tentativa.

Utilizar Baterias

Uma forma prática e eficiente para diminuir a interferência elétrica conduzida ao receptor pelo cabo AC, é utilizar baterias ou pilhas na alimentação. Desta forma, para estes casos comprovados de interferência devido a fontes de conversão AC/DC ineficientes, ou ausência de filtros de linha com blindagem e aterramento adequado, é uma ótima solução a utilização de baterias ( normalmente as automotivas ) como fonte de alimentação.

EXEMPLOS DE CASOS REAIS

A matéria que exemplifica a questão foi extraída da lista de discussão radioescutas@yahoo.com.br patrocinada pelo DX Clube do Brasil. O Marcelo Toniolo é um DXista de transito internacional, tendo publicado diversos artigos pertinentes à escuta das ondas curtas. A compreensão técnica do problema aliado a cidadania exercida, possibilitou a resolução de um problema que infelizmente é muito comum nos centros urbanos. Para acessar na íntegra a matéria de Marcelo Toniolo, acesse a seção relativa a Artigos Técnicos.

GLOSSÁRIO

Capacitor de bypass é um capacitor utilizado para prover um caminho de baixa impedância para radio freqüência em torno de um elemento de circuito
Sinais de modo-comum são sinais que estão em fase com ambos ( ou diversos ) condutores em um sistema
Sinais conduzidos são sinais que viajam através de fluxo de eletros em um fio ou outro condutor
Decibel ( dB ) uma unidade logarítmica de medida relativa de potencia que expressa a relação entre dois níveis de potencia
Sinais de modo-diferencial são sinais que chegam em dois ou mais condutores tais quais existam uma diferença de 180° de fase entre os sinais em alguns dos condutores
Compatibilidade eletromagnética ( EMC ) a habilidade de equipamentos eletrônicas a serem operados em seu ambiente eletromagnético projetado sem nem causar interferência em outros equipamentos ou sistemas, e nem sofrer interferência de outros equipamentos ou sistemas
Interferência eletromagnética ( EMI ) qualquer distúrbio elétrico que interfere com a operação normal de equipamentos eletrônicos
Emissão energia eletromagnética propagada de uma fonte através de radiação
Filtro uma rede de resistores, indutores e / ou capacitores que oferecem pouca resistência a certas freqüências enquanto bloqueiam ou atenuam outras freqüências
Sobrecarga fundamental interferência resultante de um sinal fundamental de um transmissor de radio
Terra conexão elétrica de baixa impedância à terra. Também, um ponto comum de referencia em circuitos eletrônicos
Harmônicos sinais em exatos integrais múltiplos da freqüência de operação ( ou fundamental )
Filtro de passa-alta um filtro desenhado para passar todas as freqüências acima de uma freqüência de corte, enquanto rejeita as freqüências abaixo da freqüência de corte
Imunidade a habilidade de equipamentos eletrônicos rejeitarem interferências de fontes externas de energia eletromagnética. Este é a conjugação do termo "susceptibilidade" e é o termo tipicamente usado no mundo comercial.
Indução a transferência de sinais elétricos através de acoplamento magnético
Interferência a interação indesejada entre sistemas eletrônicos
Intermodulação a mistura indesejada de duas ou mais freqüências em um dispositivo não-linear, o qual produz freqüências adicionais
Filtro de passa-baixa um filtro desenhado para passar todas as freqüências abaixo de uma freqüência de corte, enquanto rejeita as freqüências acima da freqüência de corte
Ruído qualquer sinal que interfere com o sinal desejado em comunicações ou sistemas eletrônicos
Não linear possui uma saída que não apresenta proporção linear em relação à entrada
Filtro "notch" ( pontiagudo ) um filtro que rejeita ou suprime uma faixa estreita de freqüências dentro de uma banda larga de freqüência
Largura de banda a faixa de freqüências que um filtro conduz essencialmente sem atenuação
Emissão irradiada energia de radio freqüência que é acoplada entre dois sistemas através de campos eletromagnéticos
RFI Interferência por radio freqüência interferência causada por uma fonte de sinais de radio freqüência. Esta é uma subclasse de EMI
Emissão espúria um emissão, em freqüências fora da largura de banda necessária de uma transmissão, o nível a qual pode ser reduzida sem afetar a informação que está sendo transmitida
Susceptibilidade as características de equipamentos eletrônicos que permitem respostas indesejadas quando submetidas a energia eletromagnética
TVI interferência a sistemas de televisão



Glossário relativo ao Rádio que inclui normas e procedimentos do ITU


Fontes

Handbook do Radioamador
Iwan Th. Halasz - Edusp

The ARRL Handbook 2002
ARRL

Retorna para o Guia de Navegação


Matéria dedicada ao Rádio de Ondas Curtas e a prática DX - Navegue nas Ondas Curtas do Rádio
> Envie seus comentários > Procure neste sítio
Copyright © 2002 Sarmento Campos. Todos os direitos reservados.

sábado, 21 de novembro de 2009

GRAMPO TELEFÔNICO AM

Grampo Telefônico AM

O circuito apresentado captura os sinais de áudio de uma linha telefônica e os envia para um receptor de AM

Elton da Costa Rosado

O circuito apresentado captura os sinais de áudio de uma linha telefônica e os envia para um receptor de AM colocado nas proximidades e sintonizado em frequência livre. Dadas as características do AM, o alcance é pequeno, da ordem de poucos metros, mas nada impede que o receptor seja colocado em um cômodo adjacente ao local do transmissor, e assim não seja detectada a escuta.

A frequência é ajustada nos variáveis que podem ser aproveitados de velhos receptores AM fora de uso. As bobinas empregadas têm as seguintes características:

• L1: 5 espiras de fio 20 sobre bastão de ferrite
• L2: 7 espiras de fio 20 sobre L1 com tomada central (CT)
• L3: 4 espiras de fio 20 sobre bastão de ferrite com tomada central (CT)
• L4: 7 espiras de fio 20 sobre L3
• L5: 10 espiras de fio 22 AWG com 1 cm de diâmetro

Os bastões de ferrite têm 5 cm de comprimento e 1 cm de diâmetro. A bobina LO é das usadoas em rádios AM como osciladoras mas com capacitor interno. Os capacitores variáveis são ajustados para se obter o maior rendimento.



*Originalmente publicado na revista Eletrônica Total Nº137

DISTRIBUIDOR DE VÍDEOS

Distribuidor de Sinais de Vídeo

A finalidade deste circuito é proporcionar a distribuição de sinais de vídeo entre diversos televisores sem perda de intensidade

Elton da Costa Rosado

A finalidade deste circuito é proporcionar a distribuição de sinais de vídeo entre diversos televisores sem perda de intensidade. Uma aplicação seria em hotéis ou escolas onde um mesmo CD player pode gerar sinais para diversos televisores ao mesmo tempo.

O potenciômetro P1 ajusta o ganho do amplificador operacional e portanto a intensidade do sinal nas saídas. Temos ainda trimpots para o ajuste do modulador de vídeo de modo a se obter a melhor qualidade de sinal. Os capacitores, assim como os resistores que determinam a tensão de saída, podem ser alterados para se obter o melhor desempenho.

Tanto as entradas quanto saídas devem ser blindadas com a utilização de cabos apropriados. O enrolamento primário do transformador deve ser de acordo com a rede local. Os transistores usados são BC548 ou equivalentes.
Obs.: Este circuito é algo crítico com relação à qualidade do sinal, se o layout da placa não for bem feito. Também devem ser utilizados cabos apropriados.



*Originalmente publicado na revista Eletrônica Total Nº137

SIMPLES ECONÔMICA LANTERNA DE LEDS

Lanterna de LEDs

O circuito exibido é de uma lanterna de LEDs de baixo consumo

José A. B. Ribeiro

O circuito exibido é de uma lanterna de LEDs de baixo consumo. Os LEDs são do tipo branco com uma corrente de 20 mA, e a alimentação do circuito pode ser feita com tensões de 6 a 12 V. O consumo total depende da quantidade de LEDs utilizada e da tensão de alimentação.

Obs.: Atualmente, existem LEDs brancos de alta potência, alguns deles até com os resistores embutidos. Se o leitor encontrar estes LEDs em sua localidade poderá simplificar bastante este projeto.

PEQUENO TRANSMISSOR PARA ONDAS CURTAS

Pequeno Transmissor Experimental de FM de Curto Alcance

O transmissor apresentado pode alcançar algo em torno de 100 metros, dependendo do local e da sensibilidade do receptor

Adriano Muniz Moura

O transmissor apresentado pode alcançar algo em torno de 100 metros, dependendo do local e da sensibilidade do receptor. Também influi a existência de muitas estações no local e fontes de interferências. O circuito pode ser alimentado por 4 pilhas pequenas e funciona como um bom microfone volante.

A antena é do tipo telescópica ou um pedaço de fio rígido de 15 a 40 cm. Todos os capacitores devem ser cerâmicos e a bobina consiste em 4 espiras de 20 AWG com 1 cm de diâmetro sem núcleo. No trimmer de 2-20 pF é ajustada a frequência de operação deste transmissor. Observe na montagem a polaridade do microfone de eletreto.

Obs.: Na verdade, o alcance depende da sensibilidade do receptor e das condições do local em que ele irá operar. Nem sempre os 100 metros serão conseguidos.



*Originalmente publicado na revista Eletrônica Total Nº137

LÂMPADA EM SÉRIE PARA SUA BANCADA

Lâmpada de Série

Consiste em um recurso de grande importância para a bancada de testes e reparação

José Aquiles B. Ribeiro

A lâmpada de série consiste em um recurso de grande importância para a bancada de testes e reparação. Ela é utilizada para realizar testes de consumo em equipamentos ligados à rede de energia, detectando-se curtos ou circuitos abertos. Se houver um curto, a lâmpada simplesmente acende evitando, assim, maiores danos ao aparelho e à própria instalação elétrica.

O circuito apresentado destina-se ao teste de aparelhos até 100 W na rede 110 V, ou 200 W na rede de 220 V dado o uso do fusível de 1 A. A lâmpada utilizada pode ter de 40 a 100 W, devendo ser obrigatoriamente incandescente.

Obs.: Este circuito é simples e não oferece maiores dificuldades de montagem.

SIMULADOR DE LINHA TELEFÔNICA

Simulador de Linha Telefônica

Suporte para o técnico que trabalha em reparação de aparelhos telefônicos.

José Vieira Neto

O circuito aqui sugerido serve de suporte para o técnico que trabalha em reparação de aparelhos telefônicos. Com ele, podem ser realizados os seguintes testes:

Fonia: Este teste é feito utilizando-se dois aparelhos, a disco ou a tecla. A chave S3 deve estar na posição (1).

Teste de Campainha: Com os aparelhos ligados às tomadas TM-1 e TM-2, a chave S3 na posição 2, as campainhas dos telefones deverão tocar. Somente testar as campainhas com os monofones no gancho, caso contrário pode ocorrer danos aos aparelhos.

Teste de discagem (tom-pulso): Para o caso de pulsos, ao discar um número, o LED vai piscar e ainda pode-se ouvir o som da discagem através do monofone. Para os tons, aqueles não gerados pelo teclado, podem ser ouvidos no monofone.



*Originalmente publicado na revista Eletrônica Total Nº137

TRANSMISSOR PARA A FAIXA DOS 19 METROS

Transmissor para a Faixa dos 19 metros (15 MHz)

O transmissor descrito destina-se a radioamadores, fornecendo uma potência máxima da ordem de 9 W

Ivan Fernando Roberto

O transmissor descrito destina-se a radioamadores, fornecendo uma potência máxima da ordem de 9 W. O cristal utilizado foi de 15,132 MHz, mas outros na faixa de 11 a 15 MHz podem ser usados desde que os devidos ajustes dos circuitos ressonantes sejam feitos. Com uma boa antena, seu alcance é muito grande.

XRF consiste em 15 espiras de fio 28 em um ferrite tipo anel e as espiras devem ser enroladas conforme mostra a figura junto ao diagrama. A bobina L1 é formada por 10 espiras de fio de 0,7 mm de diâmetro com núcleo ajustável de ferrite. O diâmetro da bobina é da ordem de 0,8 cm.

A modulação é feita com um amplificador de áudio que usa transistores complementares BD137 e BD138 que precisam ser dotados de radiadores de calor. O circuito deve ser alimentado por fonte de 15 V com pelo menos 5 A com excelente filtragem para que não apareçam roncos na transmissão, além dos cuidados normais com este tipo de montagem que exigem ser tomados. Uma antena externa apropriada para este transmissor deve ser utilizada para que os resultados esperados sejam obtidos. Os horários de transmissão também devem ser escolhidos para se conseguir os maiores alcances.

Obs.: Transmissores de potência são montagens que exigem experiência, principalmente quando utilizam diversas etapas sintonizadas. Além de um layout cuidadoso da placa, as bobinas são críticas e pequenas diferenças podem impedir um ajuste correto da operação. Quando isso ocorre, a potência fica comprometida e, com isso, o alcance. Os capacitores também são críticos, principalmente os cerâmicos que devem ser de excelente qualidade.



*Originalmente publicado na revista Eletrônica Total Nº137

TRANSMISSOR AM

Pequeno Transmissor para a Faixa de Ondas Médias

O transmissor indicado produz alguns watts de potência na faixa de AM (2 W) e pode ser captado em radinhos transistorizados comuns.

Adriano Muniz Moura - Uberlândia - MG

Para os leitores que gostam de radiotransmissão e não desejam ter problemas com as autoridades, o que ocorre quando emissões ilegais de FM perturbam sistemas de comunicação ou causam interferências de diversos tipos, o ideal é montar um transmissor de AM de pequena potência.

O transmissor indicado produz alguns watts de potência na faixa de AM (2 W) e pode ser captado em radinhos transistorizados comuns. A fonte deve ter boa filtragem e uma capacidade de fornecer correntes até 5 A. As bobinas L1 e L2 podem ser comerciais para AM ou enroladas em bastões de ferrite de 15 a 20 cm sendo formadas por 80 espiras de fio 28.

Os transistores devem ser dotados de radiadores de calor. Os secundários das bobinas são formados por 15 espiras do mesmo fio, sobre as bobinas primárias. A antena consiste num fio esticado de 5 a 15 metros de comprimento. Pode também ser usado um dipolo de meia onda com braços de 20 metros.




*Originalmente publicado na revista Eletrônica Total - Ano 18 - Edição 128 - Fevereiro/08

RECEPTOR DE ONDAS CURTAS

Receptor de Ondas Curtas

( PARA MELHOR VISUALIZAÇÃO, CLIQUE EM CIMA DO ESQUEMA )

O receptor experimental descrito utiliza um transistor 2N3819, mas pode ser empregado também o MPF102.

Ivan Fernando Roberto - Avaré - SP

O receptor experimental descrito sintoniza as faixas de 41, 31 e 19 metros, além das faixas de radio amadores de 20, 40 e 80 metros. Ele utiliza um transistor 2N3819, mas pode ser empregado também o MPF102. Esse transistor trabalha como detector regenerativo, sendo seguido de um amplificador operacioal 741, o qual opera como amplificador de áudio. O ganho desse amplificador é ajustado por um trimpot de 1 M ohms.

O TDA2822 funciona como etapa de potência, podendo excitar com bom volume um ou dois alto-falantes comuns. A faixa de sintonia do receptor vai de 3,2 MHz a 16 MHz, com duas bobinas selecionáveis por uma chave. O planejamento da placa de circuito impresso deve ser feito de modo que as interligações entre os componentes sejam as mais curtas possíveis. Na figura, juntamente com o diagrama, temos os detalhes para a construção das duas bobinas.

A alimentação pode ser feita com uma tensão de 6 V vinda de fonte, ou de pilhas comuns. Para melhor recepção a antena deve ser externa e longa, lembrando que pela manhã e à noite temos melhor propagação nas faixas que esse receptor sintoniza. Também obervamos que nos locais em que existe elevado nível de ruído, a sintonia das estações mais fracas e distantes é problemática. Sob condições favoráveis, entretanto, pode-se captar estações de países distantes.




*Originalmente publicado na revista Eletrônica Total - Ano 18 - Edição 128 - Fevereiro/08

RECEPTOR VHF

Receptor de VHF/FM

Este receptor experimental super regenerativo não tem a sensibilidade e a seletividade dos receptores comerciais, mas serve para captar estações próximas de VHF e FM.

Adriano Muniz Moura - Uberlândia - MG

Este receptor experimental super regenerativo não tem a sensibilidade e a seletividade dos receptores comerciais, mas serve para captar estações próximas de VHF e FM. As conexões devem ser curtas, pois o circuito é crítico.

CV é um capacitor variável de 10 – 70 pF ou 10 -100 pF. A bobina L1 é formada por 3 espiras de fio 13 com 1 cm de diâmetro sem núcleo. L2 é formada por 5 espiras de fio 18 com 1 cm de diâmetro, L3 é formada por 7 espiras e L4 por 8 espiras também com a mesma forma e diâmetro de L1. As faixas sintonizadas são, aproximadamente:

L1 – 50 a 60 MHz
L2 – 60 a 70 MHz
L3 – 70 a 80 MHz
L4 – 80 a 120 MHz

XRF consiste em um choque formado por 60 espiras de fio 32 em bastão de plástico de 2 mm de diâmetro. O capacitor de 5 pF pode ter seu valor alterado experimentalmente para se alcançar os melhores resultados. A antena não deve ter mais do que 1 metro de comprimento para não instabilizar o circuito. Em TP1 ajusta-se o rendimento (regeneração) do circuito, de modo a se obter a melhor recepção.

ESQUEMA

Receptor de Satélite T-1200 Master

Uma forma simples de reduzir o sinal no sentido de se obter melhor rendimento, consiste em se deixar o fio terra do plugue CN3 da saída de RF desligado. Com isso, o aparelho voltou a funcionar corretamente.

Alexandre José Nário - Jataúba - PE

DEFEITO: Imagem com perda de sincronismo

MARCA: Tecsat


RELATO:

Esse é um defeito muito comum nesse tipo de aparelho. A imagem perde o sincronismo constantemente. Como a perda ocorre de forma intermitente, o diagnóstico pode parecer difícil, mas a prática revelou que o problema é causado pela saída de RF enviando o sinal de forma excessiva. Uma forma simples de reduzir o sinal no sentido de se obter melhor rendimento, consiste em se deixar o fio terra do plugue CN3 da saída de RF desligado. Com isso, o aparelho voltou a funcionar corretamente.



*Originalmente publicado na revista Eletrônica Total - Ano 19 - Edição 129