sábado, 22 de agosto de 2009

QUE É BIOS?

BIOS


O BIOS contém todo o software básico, necessário para inicializar a placa-mãe, checar os dispositivos instalados e carregar o sistema operacional, o que pode ser feito a partir do HD, CD-ROM, pendrive, ou qualquer outra mídia disponível. O BIOS inclui também o Setup, o software que permite configurar as diversas opções oferecidas pela placa. O processador é programado para procurar e executar o BIOS sempre que o micro é ligado, processando-o da mesma forma que outro software qualquer. É por isso que a placa-mãe não funciona "sozinha", você precisa ter instalado o processador e os pentes de memória para conseguir acessar o Setup. :)

Por definição, o BIOS é um software, mas, como de praxe, ele fica gravado em um chip espetado na placa-mãe. Na grande maioria dos casos, o chip combina uma pequena quantidade de memória Flash (256, 512 ou 1024 KB), o CMOS, que é composto por de 128 a 256 bytes de memória volátil e o relógio de tempo real. Nas placas antigas era utilizado um chip DIP, enquanto nas atuais é utilizado um chip PLCC (plastic leader chip carrier), que é bem mais compacto:


Chip PLCC que armazena o BIOS da placa-mãe

O CMOS serve para armazenar as configurações do setup. Como elas representam um pequeno volume de informações, ele é bem pequeno em capacidade. Assim como a memória RAM principal, ele é volátil, de forma que as configurações são perdidas quando a alimentação elétrica é cortada. Por isso, toda placa-mãe inclui uma bateria, que mantém as configurações quando o micro é desligado.

A mesma bateria alimenta também o relógio de tempo real (real time clock), que, apesar do nome pomposo, é um relógio digital comum, que é o responsável por manter atualizada a hora do sistema, mesmo quando o micro é desligado.

Se você prestou atenção nos três parágrafos anteriores, deve estar se perguntando por que as configurações do Setup não são armazenadas diretamente na memória Flash, em vez de usar o CMOS, que é volátil. Isso seria perfeitamente possível do ponto de vista técnico, mas a idéia de usar memória volátil para guardar as configurações é justamente permitir que você possa zerar as configurações do Setup (removendo a bateria, ou mudando a posição do jumper) em casos onde o micro deixar de inicializar por causa de alguma configuração incorreta.

Um caso clássico é tentar fazer um overclock muito agressivo e o processador passar a travar logo no início do boot, sem que você tenha chance de entrar no setup e desfazer a alteração. Atualmente basta zerar o setup para que tudo volte ao normal, mas, se as configurações fossem armazenadas na memória Flash, a coisa seria mais complicada.

Para zerar o CMOS, você precisa apenas cortar o fornecimento de energia para ele. Existem duas formas de fazer isso. A primeira é (com o micro desligado) remover a bateria da placa-mãe e usar uma moeda para fechar um curto entre os dois contatos da bateria durante 15 segundos. Isso garante que qualquer carga remanescente seja eliminada e o CMOS seja realmente apagado. A segunda é usar o jumper "Clear CMOS", que fica sempre posicionado próximo à bateria. Ele possui duas posições possíveis, uma para uso normal e outra para apagar o CMOS ("discharge", ou "clear CMOS"). Basta mudá-lo de posição durante 15 segundos e depois recolocá-lo na posição original.

Uma dica é que muitas placas vêm de fábrica com o jumper na posição "discharge", para evitar que a carga da bateria seja consumida enquanto a placa fica em estoque. Ao montar o micro, você precisa se lembrar de verificar e, caso necessário, mudar a posição do jumper, caso contrário a placa não funciona, ou exibe uma mensagem de erro durante o boot e não salva as configurações do Setup.


Jumper Clear CMOS

Como todo software, o BIOS possui bugs, muitos por sinal. De tempos em tempos, os fabricantes disponibilizam versões atualizadas, corrigindo problemas, adicionando compatibilidade com novos processadores (e outros componentes) e, em alguns casos, adicionando novas opções de configuração no Setup. É muito comum que você precise atualizar o BIOS da placa para que ela funcione em conjunto com novos processadores, de fabricação mais recente que a placa-mãe.

Atualizar o BIOS consiste em dar boot através de um disquete ou CD-ROM, contendo o software que faz a gravação, indicar a localização do arquivo com a nova imagem e deixar que ele regrave a memória Flash com o novo código.

O primeiro passo é visitar a área de suporte ou downloads do site do fabricante e procurar por atualizações para a sua placa-mãe. Se você usa Windows, aproveite para verificar se não estão disponíveis novas versões dos drivers, que também podem corrigir problemas e adicionar novos recursos.

Por exemplo, uma Asus K8N4-E SE, que testei certa vez, tinha um problema estranho com a placa de rede, que parava de funcionar aleatoriamente depois de algumas horas de uso contínuo, que foi solucionado com a atualização do BIOS da versão 0106 para a 0110.

Para baixar o arquivo, acessei a área de download do site da Asus (http://support.asus.com/download/) e, no menu de busca por atualizações, selecionei as opções "Motherboard > Socket 754 > K8N4-E SE > BIOS", chegando ao arquivo:

Muitos fabricantes ainda disponibilizam disquetes de boot, contendo uma versão reduzida do FreeDOS ou MS-DOS, mas muitos já passaram a disponibilizar CDs de boot (basta gravar a imagem .iso usando o Nero, K3B ou outro programa de gravação e dar boot), o que elimina a necessidade de ter que instalar um drive de disquetes na máquina só para poder atualizar o BIOS.

Uma idéia nova, que foi inaugurada pela Asus e vem sendo adotada por cada vez mais fabricantes, é incluir o utilitário de atualização diretamente no próprio BIOS. Nesse caso, você só precisa pressionar uma combinação de teclas durante o boot e indicar a localização do arquivo de atualização. Na maioria das placas, ele precisa ser gravado num disquete ou CD-ROM (você precisa queimar um CD, colocando o arquivo no diretório raiz), mas algumas já suportam também o uso de pendrives e cartões de memória instalados com a ajuda de um adaptador USB.

Na maioria dos casos, você pode acessar o utilitário de atualização pressionando ALT+F2 durante a contagem de memória. Em muitas placas, a opção também fica disponível através do Setup. Nas placas da Asus, por exemplo, ela fica dentro do menu "Tools". Dentro do programa, basta indicar o arquivo a ser gravado. Eles geralmente possuem em torno de 512 KB e utilizam a extensão ".BIN" ou ".ROM":


Atualização de BIOS

Atualizar o BIOS é sempre um procedimento potencialmente perigoso, já que sem ele a placa não funciona. Na grande maioria dos casos, o programa também oferece a opção de salvar um backup do BIOS atual antes de fazer a atualização. Esse é um passo importante, pois se algo sair errado, ou você tentar gravar uma atualização para um modelo de placa diferente, ainda restará a opção de reverter o upgrade, regravando o backup da versão antiga.

A maioria das placas atuais incorpora sistemas de proteção, que protegem áreas essenciais do BIOS, de forma que, mesmo que acabe a energia no meio da atualização, ou você tente gravar o arquivo errado, a placa ainda preservará as funções necessárias para que você consiga reabrir o programa de gravação e terminar o serviço. Em alguns casos, a placa chega a vir com um "BIOS de emergência", um chip extra, com uma cópia do BIOS original, que você pode instalar na placa em caso de problemas.

Placas antigas não possuem essas camadas de proteção, de forma que um upgrade malsucedido podia realmente inutilizar a placa. Nesses casos, a solução era remover o chip e levá-lo a alguém que tivesse um gravador de EEPROM. Depois de regravado, o chip era reinstalado na placa e tudo voltava ao normal. Ou seja, mesmo nesses casos, a placa não era realmente danificada, ficava apenas "fora de serviço".

Um truque muito usado era utilizar uma placa-mãe igual, ou pelo menos de modelo similar, para regravar o BIOS da placa danificada. Nesses casos, você dava boot com o disquete ou CD de atualização (na placa boa), removia o chip com o BIOS e instalava no lugar o chip da placa danificada (com o micro ligado), dando prosseguimento ao processo de regravação. Dessa forma, você usava a placa "boa" para regravar o BIOS da placa "ruim". Naturalmente, a troca precisava ser feita com todo o cuidado, já que um curto nos contatos podia inutilizar a placa-mãe.

Concluindo, existem também programas de gravação para Windows, que são incluídos nos CDs de drivers de muitas placas. Eles são mais fáceis de usar, mas fazer a atualização através deles é considerado menos seguro, já que, dentro do Windows e com outros programas e serviços rodando, a possibilidade de algo inesperado acontecer é maior.

Hoje em dia, a maioria dos dispositivos incluindo o HD, drive óptico, placa wireless e placa de vídeo possuem um software de inicialização, similar ao BIOS da placa-mãe. Ele pode ser gravado diretamente no dispositivo, em um chip de memória Flash, ou mesmo em algum tipo de memória ROM, ou ser incorporado ao driver. Essa segunda solução vem sendo cada vez mais adotada pelos fabricantes, pois permite eliminar o chip de memória, reduzindo o custo. É por isso que, muitas vezes (sobretudo ao tentar ativar sua placa wireless ou scanner no Linux), você precisa baixar, além do driver ou módulo necessário, também os arquivos que compõem o firmware da placa.

Hardware x Software


Os computadores são muito bons em armazenar informações e fazer cálculos, mas não são capazes de tomar decisões sozinhos.
Sempre existe um ser humano orientando o computador e dizendo a ele o que fazer a cada passo. Seja você mesmo, teclando e usando o mouse, ou, num nível mais baixo, o programador que escreveu os programas que você está usando.

Chegamos então aos softwares, gigantescas cadeias de instruções que permitem que os computadores façam coisas úteis. É aí que entra o sistema operacional e, depois dele, os programas que usamos no dia-a-dia.

Um bom sistema operacional é invisível. A função dele é detectar e utilizar o hardware da máquina de forma eficiente, fornecendo uma base estável sobre a qual os programas que utilizamos no cotidiano possam ser usados. Como diz Linus Torvalds, as pessoas não usam o sistema operacional, usam os programas instalados. Quando você se lembra que está usando um sistema operacional, é sinal de que alguma coisa não está funcionando como deveria.

O sistema operacional permite que o programador se concentre em adicionar funções úteis, sem ficar se preocupando com que tipo de placa de vídeo ou placa de som você tem. O programa diz que quer mostrar uma janela na tela e ponto; o modelo de placa de vídeo que está instalado e que comandos são necessários para mostrar a janela são problema do sistema operacional.

Para acessar a placa de vídeo, ou qualquer outro componente instalado, o sistema operacional precisa de um driver, que é um pequeno programa que trabalha como um intérprete, permitindo que o sistema converse com o dispositivo. Cada placa de vídeo ou som possui um conjunto próprio de recursos e comandos que permitem usá-los. O driver converte esses diferentes comandos em comandos padrão, que são entendidos pelo sistema operacional.

Embora as duas coisas sejam igualmente importantes, existe uma distinção entre o "hardware", que inclui todos os componentes físicos, como o processador, memória, placa-mãe, etc. e o "software", que inclui o sistema operacional, os programas e todas as informações armazenadas. Como diz a sabedoria popular, "hardware é o que você chuta, e software é o que você xinga". :p

AS MOTHERBOARDS

Placa-mãe


A placa-mãe é o componente mais importante do micro, pois é ela a responsável pela comunicação entre todos os componentes. Pela enorme quantidade de chips, trilhas, capacitores e encaixes, a placa-mãe também é o componente que, de uma forma geral, mais dá defeitos. É comum que um slot PCI pare de funcionar (embora os outros continuem normais), que instalar um pente de memória no segundo soquete faça o micro passar a travar, embora o mesmo pente funcione perfeitamente no primeiro e assim por diante.

A maior parte dos problemas de instabilidade e travamentos são causados por problemas diversos na placa-mãe, por isso ela é o componente que deve ser escolhido com mais cuidado. Em geral, vale mais a pena investir numa boa placa-mãe e economizar nos demais componentes, do que o contrário.

A qualidade da placa-mãe é de longe mais importante que o desempenho do processador. Você mal vai perceber uma diferença de 20% no clock do processador, mas com certeza vai perceber se o seu micro começar a travar ou se a placa de vídeo onboard não tiver um bom suporte no Linux, por exemplo.

Ao montar um PC de baixo custo, economize primeiro no processador, depois na placa de vídeo, som e outros periféricos. Deixe a placa-mãe por último no corte de despesas.

Não se baseie apenas na marca da placa na hora de comprar, mas também no fornecedor. Como muitos componentes entram no país ilegalmente, "via Paraguai", é muito comum que lotes de placas remanufaturadas ou defeituosas acabem chegando ao mercado. Muita gente compra esses lotes, vende por um preço um pouco abaixo do mercado e depois desaparece. Outras lojas simplesmente vão vendendo placas que sabem ser defeituosas até acharem algum cliente que não reclame. Muitas vezes os travamentos da placa são confundidos com "paus do Windows", de forma que sempre aparece algum desavisado que não percebe o problema.

Antigamente existia a polêmica entre as placas com ou sem componentes onboard. Hoje em dia isso não existe mais, pois todas as placas vêm com som e rede onboard. Apenas alguns modelos não trazem vídeo onboard, atendendo ao público que vai usar uma placa 3D offboard e prefere uma placa mais barata ou com mais slots PCI do que com o vídeo onboard que, de qualquer forma, não vai usar.

Os conectores disponíveis na placa estão muito relacionados ao nível de atualização do equipamento. Placas atuais incluem conectores PCI Express x16, usados para a instalação de placas de vídeo offboard, slots PCI Express x1 e slots PCI, usados para a conexão de periféricos diversos. Placas antigas não possuem slots PCI Express nem portas SATA, oferecendo no lugar um slot AGP para a conexão da placa de vídeo e duas ou quatro portas IDE para a instalação dos HDs e drives ópticos.

Temos ainda soquetes para a instalação dos módulos de memória, o soquete do processador, o conector para a fonte de alimentação e o painel traseiro, que agrupa os encaixes dos componentes onboard, incluindo o conector VGA ou DVI do vídeo, conectores de som, conector da rede e as portas USB.

O soquete (ou slot) para o processador é a principal característica da placa-mãe, pois indica com quais processadores ela é compatível. Você não pode instalar um Athlon X2 em uma placa soquete A (que é compatível com os antigos Athlons, Durons e Semprons antigos), nem muito menos encaixar um Sempron numa placa soquete 478, destinada aos Pentium 4 e Celerons antigos. O soquete é na verdade apenas um indício de diferenças mais "estruturais" na placa, incluindo o chipset usado, o layout das trilhas de dados, etc. É preciso desenvolver uma placa quase que inteiramente diferente para suportar um novo processador.

Existem dois tipos de portas para a conexão do HD: as portas IDE tradicionais, de 40 pinos (chamadas de PATA, de "Parallel ATA") e os conectores SATA (Serial ATA), que são muito menores. Muitas placas recentes incluem um único conector PATA e quatro conectores SATA. Outras incluem as duas portas IDE tradicionais e dois conectores SATA, e algumas já passam a trazer apenas conectores SATA, deixando de lado os conectores antigos.

Existem ainda algumas placas "legacy free", que eliminam também os conectores para o drive de disquete, portas seriais e porta paralela, incluindo apenas as portas USB. Isso permite simplificar o design das placas, reduzindo o custo de produção para o fabricante.


Placa soquete 775

Tudo isso é montado dentro do gabinete, que contém outro componente importante: a fonte de alimentação. A função da fonte é transformar a corrente alternada da tomada em corrente contínua (AC) já nas tensões corretas, usadas pelos componentes. Ela serve também como uma última linha de defesa contra picos de tensão e instabilidade na corrente, depois do nobreak ou estabilizador.

Embora quase sempre relegada a último plano, a fonte é outro componente essencial num PC atual. Com a evolução das placas de vídeo e dos processadores, os PCs consomem cada vez mais energia. Na época dos 486, as fontes mais vendidas tinham 200 watts ou menos, enquanto as atuais têm a partir de 450 watts. Existem ainda fontes de maior capacidade, especiais para quem quer usar duas placas 3D de ponta em SLI, que chegam a oferecer 1000 watts!

Uma fonte subdimensionada não é capaz de fornecer energia suficiente nos momentos de pico, causando desde erros diversos, provocados por falhas no fornecimento (o micro trava ao tentar rodar um game pesado, ou trava sempre depois de algum tempo de uso, por exemplo), ou, em casos mais graves, até mesmo danos aos componentes. Uma fonte de má qualidade, obrigada a trabalhar além do suportado, pode literalmente explodir, danificando a placa-mãe, memórias, HDs e outros componentes sensíveis.


Micro montado

Evite comprar fontes muito baratas e, ao montar um micro mais parrudo, invista numa fonte de maior capacidade.

Não se esqueça também do aterramento, que é outro fator importante, mas freqüentemente esquecido. O fio terra funciona como uma rota de fuga para picos de tensão provenientes da rede elétrica. A eletricidade flui de uma forma similar à água: vai sempre pelo caminho mais fácil. Sem ter para onde ir, um raio vai torrar o estabilizador, a fonte de alimentação e, com um pouco mais de azar, a placa-mãe e o resto do micro. O fio terra evita isso, permitindo que a eletricidade escoe por um caminho mais fácil, deixando todo o equipamento intacto.

O fio terra é simplesmente uma barra de cobre com dois a três metros de comprimento, que é cravada no solo, no meio de um buraco de 20 cm de largura, preenchido com sal grosso e carvão. Naturalmente, instalar o terra é trabalho para o eletricista, já que um aterramento mal feito pode ser mais prejudicial que não ter aterramento algum. Não acredite em crendices como usar um prego fincado na parede ou um cano metálico como aterramento.

Sem o terra, o filtro de linha ou estabilizador perde grande parte de sua função, tornando-se mais um componente decorativo, que vai ser torrado junto com o resto do equipamento, do que uma proteção real.

Nas grandes cidades, é relativamente raro que os micros realmente queimem por causa de raios, pois os transformadores e disjuntores oferecem uma proteção razoável. Mas, pequenos picos de tensão são responsáveis por pequenos danos nos pentes de memória e outros componentes sensíveis, danos que se acumulam, comprometendo a estabilidade e abreviando a vida útil do equipamento.

A longo prazo, o investimento na instalação do terra e melhorias na instalação elétrica acabam se pagando com juros, principalmente se você tem mais de um micro.

PLACA DE VÍDEO

Placa de vídeo


Depois do processador, memória e HD, a placa de vídeo é provavelmente o componente mais importante do PC. Originalmente, as placas de vídeo eram dispositivos simples, que se limitavam a mostrar o conteúdo da memória de vídeo no monitor. A memória de vídeo continha um simples bitmap da imagem atual, atualizada pelo processador, e o RAMDAC (um conversor digital-analógico que faz parte da placa de vídeo) lia a imagem periodicamente e a enviava ao monitor.

A resolução máxima suportada pela placa de vídeo era limitada pela quantidade de memória de vídeo. Na época, memória era um artigo caro, de forma que as placas vinham com apenas 1 ou 2 MB. As placas de 1 MB permitiam usar no máximo 800x600 com 16 bits de cor, ou 1024x768 com 256 cores. Estavam limitadas ao que cabia na memória de vídeo.

Esta da foto a seguir é uma Trident 9440, uma placa de vídeo muito comum no início dos anos 90. Uma curiosidade é que ela foi uma das poucas placas de vídeo "atualizáveis" da história. Ela vinha com apenas dois chips de memória, totalizando 1 MB, mas era possível instalar mais dois, totalizando 2 MB. Hoje em dia, atualizar a memória da placa de vídeo é impossível, já que as placas utilizam módulos BGA, que podem ser instalados apenas em fábrica.


Trident 9440

Em seguida, as placas passaram a suportar recursos de aceleração, que permitem fazer coisas como mover janelas ou processar arquivos de vídeo de forma a aliviar o processador principal. Esses recursos melhoram bastante a velocidade de atualização da tela (em 2D), tornando o sistema bem mais responsivo.

Finalmente, as placas deram o passo final, passando a suportar recursos 3D. Imagens em três dimensões são formadas por polígonos, formas geométricas como triângulos e retângulos em diversos formatos. Qualquer objeto em um game 3D é formado por um grande número destes polígonos, Cada polígono tem sua posição na imagem, um tamanho e cor específicos. O "processador" incluído na placa, responsável por todas estas funções é chamado de GPU (Graphics Processing Unit, ou unidade de processamento gráfico).


Quase todo o processamento da imagem em games 3D é feito pela placa 3D

Para tornar a imagem mais real, são também aplicadas texturas sobre o polígonos. Uma textura nada mais é do que uma imagem 2D comum, aplicada sobre um conjunto de polígonos. O uso de texturas permite que um muro realmente tenha o aspecto de um muro de pedras, por exemplo, já que podemos usar a imagem de um muro real sobre os polígonos.

O uso das texturas não está limitado apenas a superfícies planas. É perfeitamente possível moldar uma textura sobre uma esfera, por exemplo. Quanto maior o número de polígonos usados e melhor a qualidade das texturas aplicadas sobre eles, melhor será a qualidade final da imagem. Veja um exemplo de aplicação de texturas:


Polígonos e imagem finalizada (cortesia da nVidia)

O processo de criação de uma imagem tridimensional é dividido em três etapas, chamadas de desenho, geometria e renderização. Na primeira etapa, é criada uma descrição dos objetos que compõem a imagem, ou seja: quais polígonos fazem parte da imagem, qual é a forma e tamanho de cada um, qual é a posição de cada polígono na imagem, quais serão as cores usadas e, finalmente, quais texturas e quais efeitos 3D serão aplicados. Depois de feito o "projeto" entramos na fase de geometria, onde a imagem é efetivamente criada e armazenada na memória da placa 3D.

Ao final da etapa de geometria, todos os elementos que compõem a imagem estão prontos. O problema é que eles estão armazenados na memória da placa de vídeo na forma de um conjunto de operações matemáticas, coordenadas e texturas, que ainda precisam ser transformadas na imagem que será exibida no monitor. É aqui que chegamos à parte mais complexa e demorada do trabalho, que é a renderização da imagem.

Essa última etapa consiste em transformar as informações armazenadas na memória em uma imagem bidimensional que será mostrada no monitor. O processo de renderização é muito mais complicado do que parece; é necessário determinar (a partir do ponto de vista do espectador) quais polígonos estão visíveis, aplicar os efeitos de iluminação adequados, etc.

Apesar de o processador também ser capaz de criar imagens tridimensionais, trabalhando sozinho ele não é capaz de gerar imagens de qualidade a grandes velocidades (como as demandadas por jogos complexos), pois tais imagens exigem um número absurdo de cálculos e processamento. Para piorar ainda mais a situação, o processador tem que ao mesmo tempo executar várias outras tarefas relacionadas com o aplicativo.

As placas aceleradoras 3D, por sua vez, possuem processadores dedicados, cuja função é unicamente processar as imagens, o que podem fazer com uma velocidade incrível, deixando o processador livre para executar outras tarefas. Com elas, é possível construir imagens tridimensionais com uma velocidade suficiente para criar jogos complexos a um alto frame-rate.

Depois dos jogos e aplicativos profissionais, os próximos a aproveitarem as funções 3D das placas de vídeo foram os próprios sistemas operacionais. A idéia fundamental é que, apesar de toda a evolução do hardware, continuamos usando interfaces muito similares às dos sistemas operacionais do final da década de 80, com janelas, ícones e menus em 2D. Embora o monitor continue sendo uma tela bidimensional, é possível criar a ilusão de um ambiente 3D, da mesma forma que nos jogos, permitindo criar todo tipo de efeitos interessantes e, em alguns casos, até mesmo úteis ;).

No caso do Windows Vista temos o Aero, enquanto no Linux a solução mais usada é o AIGLX, disponível na maioria das distribuições atuais:


Efeito de cubo do AIGLX, que permite alternar entre diversos desktops virtuais

Com a evolução das placas 3D, os games passaram a utilizar gráficos cada vez mais elaborados, explorando os recursos das placas recentes. Isso criou um círculo vicioso, que faz com que você precise de uma placa razoavelmente recente para jogar qualquer game atual.

As placas 3D atuais são praticamente um computador à parte, pois além da qualidade generosa de memória RAM, acessada através de um barramento muito mais rápido que a do sistema, o chipset de vídeo é muito mais complexo e absurdamente mais rápido que o processador principal no processamento de gráficos. O chipset de uma GeForce 7800 GT, por exemplo, é composto por 302 milhões de transistores, mais do que qualquer processador da época em que foi lançada.

As placas 3D offboard também incluem uma quantidade generosa de memória de vídeo (512 MB ou mais nos modelos mais recentes), acessada através de um barramento muito rápido. O GPU (o chipset da placa) é também muito poderoso, de forma que as duas coisas se combinam para oferecer um desempenho monstruoso.

Com a introdução do PCI Express, surgiu também a possibilidade de instalar duas, ou até mesmo quatro placas, ligadas em SLI (no caso das placas nVidia) ou CrossFire (no caso das placas AMD/ATI), o que oferece um desempenho próximo do dobro (ou do quádruplo) obtido por uma placa isolada. Aqui, por exemplo, temos duas placas AMD/ATI X1950 em modo CrossFire:


CrossFire com duas placas AMD/ATI X1950

Longe do mundo brilhante das placas de alto desempenho, temos as placas onboard, que são de longe as mais comuns. Elas são soluções bem mais simples, onde o GPU é integrado ao próprio chipset da placa-mãe e, em vez de utilizar memória dedicada, como nas placas offboard, utiliza parte da memória RAM principal, que é "roubada" do sistema.

Mesmo uma placa antiga, como a GeForce 4 Ti4600, tem 10.4 GB/s de barramento com a memória de vídeo, enquanto ao usar um pente de memória DDR PC 3200, temos apenas 3.2 GB/s de barramento na memória principal, que ainda por cima precisa ser compartilhado entre o vídeo e o processador principal. O processador lida bem com isso, graças aos caches L1 e L2, mas a placa de vídeo realmente não tem para onde correr. É por isso que os chipsets de vídeo onboard são normalmente bem mais simples: mesmo um chip caro e complexo não ofereceria um desempenho muito melhor, pois o grande limitante é o acesso à memória.

De uma forma geral, as placas de vídeo onboard (pelo menos os modelos que dispõem de drivers adequados) atuais atendem bem às tarefas do dia-a-dia, com a grande vantagem do custo. Elas também permitem rodar os games mais antigos, apesar de, naturalmente, ficarem devendo nos lançamentos recentes. As placas mais caras são reservadas a quem realmente faz questão de rodar os games recentes com uma boa qualidade. Existem ainda modelos de placas 3D específicos para uso profissional, como as nVidia Quadro.

O HD

No final das contas, a memória RAM funciona como uma mesa de trabalho, cujo conteúdo é descartado a cada boot. Temos em seguida o disco rígido, também chamado de hard disk (o termo em Inglês), HD ou até mesmo de "disco duro" pelos nossos primos lusitanos. Ele serve como unidade de armazenamento permanente, guardando dados e programas.

O HD armazena os dados em discos magnéticos que mantêm a gravação por vários anos. Os discos giram a uma grande velocidade e um conjunto de cabeças de leitura, instaladas em um braço móvel faz o trabalho de gravar ou acessar os dados em qualquer posição nos discos. Junto com o CD-ROM, o HD é um dos poucos componentes mecânicos ainda usados nos micros atuais e, justamente por isso, é o que normalmente dura menos tempo (em média de três a cinco anos de uso contínuo) e que inspira mais cuidados.


Mecanismo interno do HD

Na verdade, os discos magnéticos dos HDs são selados, pois a superfície magnética onde são armazenados os dados é extremamente fina e sensível. Qualquer grão de poeira que chegasse aos discos poderia causar danos à superfície, devido à enorme velocidade de rotação dos discos. Fotos em que o HD aparece aberto são apenas ilustrativas, no mundo real ele é apenas uma caixa fechada sem tanta graça.

Apesar disso, é importante notar que os HDs não são fechados hermeticamente, muito menos a vácuo, como muitos pensam. Um pequeno filtro permite que o ar entra e saia, fazendo com que a pressão interna seja sempre igual à do ambiente. O ar é essencial para o funcionamento do HD, já que ele é necessário para criar o "colchão de ar" que evita que as cabeças de leitura toquem os discos.

Tradicionalmente, o sistema operacional era sempre instalado no HD antes de poder ser usado. Enquanto está trabalhando, o sistema precisa freqüentemente modificar arquivos e configurações, o que seria impossível num CD-ROM, já que os dados gravados nele não podem ser alterados.

Isso mudou com o aparecimento do Knoppix, Kurumin e outras distribuições Linux que rodam diretamente do CD-ROM. Neste caso, um conjunto de modificações "enganam" o sistema, fazendo com que ele use a maior parte dos arquivos (os que não precisam ser alterados) a partir do CD-ROM, e o restante (os que realmente precisam ser alterados) a partir da memória RAM.

Isto tem algumas limitações: as configurações são perdidas ao desligar (a menos que você as salve em um pendrive ou em uma pasta do HD), pois tudo é armazenado na memória RAM, cujo conteúdo é sempre perdido ao desligar o micro.

Mas, voltando à função do HD, imagine que, como a memória RAM é cara, você compra sempre uma quantidade relativamente pequena, geralmente de 512 MB a 2 GB, de acordo com a aplicação a que o micro se destina e ao seu bolso. Por outro lado, você dificilmente vai encontrar um HD com menos que 80 ou 120 GB à venda. Ou seja, temos centenas de vezes mais espaço no HD do que na memória RAM.

Bem antigamente, nos anos 80, época dos primeiros PCs, você só podia rodar programas que coubessem na memória RAM disponível. Naquela época, a memória RAM era muito mais cara que hoje em dia, então o mais comum era usar 256 ou 512 KB (sim, kbytes, duas mil vezes menos que usamos hoje, tempos difíceis aqueles :). Os mais abonados tinham dinheiro para comprar um megabyte inteiro, mas nada além disso.

Se você quisesse rodar um programa com mais de 256 KB, tinha que comprar mais memória, não tinha conversa. Sem outra escolha, os programadores se esforçavam para deixar seus programas o mais compactos possíveis para que eles rodassem nos micros com menos memória.

Mais tarde, quando a Intel estava desenvolvendo o 386, foi criado o recurso de memória virtual, que permite simular a existência de mais memória RAM, utilizando espaço do HD. A memória virtual pode ser armazenada em um arquivo especialmente formatado no HD, ou em uma partição dedicada (como no caso do Linux) e a eficiência com que ela é usada varia bastante de acordo com o sistema operacional, mas ela permite que o sistema continue funcionando, mesmo com pouca memória disponível.

O problema é que o HD é muito mais lento que a memória RAM. Enquanto um simples módulo DDR2-533 (PC2-4200) comunica-se com o processador a uma velocidade teórica de 4200 megabytes por segundo, a velocidade de leitura sequencial dos HDs atuais (situação em que o HD é mais rápido) dificilmente ultrapassa a marca dos 100 MB/s.

Existe um comando no Linux que serve para mostrar de forma rápida o desempenho do HD, o "hdparm". Quando o rodo no meu micro, que usa um HD SATA relativamente recente, ele diz o seguinte:

# hdparm -t /dev/sda
/dev/sda: Timing buffered disk reads: 184 MB in 3.02 seconds = 60.99 MB/sec

No Windows, você pode medir a taxa de leitura sequencial do HD usando o HD Tach, disponível no http://www.simplisoftware.com/. Não se surpreenda com o resultado. Como disse, o HD é muito lento se comparado à memória.

Para piorar as coisas, o tempo de acesso do HD (o tempo necessário para localizar a informação e iniciar a transferência) é absurdamente mais alto que o da memória RAM. Enquanto na memória falamos em tempos de acesso inferiores a 10 nanosegundos (milionésimos de segundo), a maioria dos HDs trabalha com tempos de acesso superiores a 10 milissegundos. Isso faz com que o desempenho do HD seja muito mais baixo ao ler pequenos arquivos espalhados pelo disco, como é o caso da memória virtual. Em muitas situações, o HD chega ao ponto de não ser capaz de atender a mais do que duas ou três centenas de requisições por segundo.

A fórmula é simples: quanto menos memória RAM, mais memória swap (memória virtual) é usada e mais lento o sistema fica. O processador, coitado, não pode fazer nada além de ficar esperando a boa vontade do HD em mandar à conta-gotas os dados de que ele precisa para trabalhar. Ou seja, quando você compra um micro com um processador de 3 GHz e 256 MB de RAM, você está literalmente jogando dinheiro no lixo, pois o processador vai ficar boa parte do tempo esperando pelo HD. Vender micros novos com 256, ou pior, com apenas 128 MB de RAM, é uma atrocidade que deveria ser classificada como crime contra a humanidade. ;)

Por outro lado, quando você tem instalado mais memória do que o sistema realmente precisa, é feito o inverso. Ao invés de copiar arquivos da memória para o HD, arquivos do HD, contendo os programas, arquivos e bibliotecas que já foram anteriormente abertos é que são copiados para a memória, fazendo com que o acesso a eles passe a ser instantâneo. Os programas e arquivos passam a ser abertos de forma gritantemente mais rápida, como se você tivesse um HD muito mais rápido do que realmente é.

Esse recurso é chamado de cache de disco e (sobretudo no Linux) é gerenciado de forma automática pelo sistema, usando a memória disponível. Naturalmente, o cache de disco é descartado imediatamente quando a memória precisa ser usada para outras coisas. Ele é apenas uma forma de aproveitar o excedente de memória, sem causar nenhum efeito desagradável.

Ironicamente, a forma mais eficiente de melhorar o desempenho do HD, na maioria das aplicações, é instalar mais memória, fazendo com que uma quantidade maior de arquivos possa ser armazenada no cache de disco. É por isso que servidores de arquivos, servidores proxy e servidores de banco de dados costumam usar muita memória RAM, em muitos casos 4 GB ou mais.

Uma outra forma de melhorar o desempenho do HD é usar RAID, onde dois ou quatro HDs passam a ser acessados como se fossem um só, multiplicando a velocidade de leitura e gravação. Esse tipo de RAID, usado para melhorar o desempenho, é chamado de RAID 0. Existe ainda o RAID 1, onde são usados dois HDs, mas o segundo é uma cópia exata do primeiro, que garante que os dados não sejam perdidos no caso de algum problema mecânico em qualquer um dos dois. O RAID tem se tornado um recurso relativamente popular, já que atualmente a maioria das placas-mãe já vêm com controladoras RAID onboard.

O PROCESSADOR

O processador é o cérebro do micro, encarregado de processar a maior parte das informações. Ele é também o componente onde são usadas as tecnologias de fabricação mais recentes.

Existem no mundo apenas quatro grandes empresas com tecnologia para fabricar processadores competitivos para micros PC: a Intel (que domina mais de 60% do mercado), a AMD (que disputa diretamente com a Intel), a VIA (que fabrica os chips VIA C3 e C7, embora em pequenas quantidades) e a IBM, que esporadicamente fabrica processadores para outras empresas, como a Transmeta.


Athlon X2 e Pentium D

O processador é o componente mais complexo e freqüentemente o mais caro, mas ele não pode fazer nada sozinho. Como todo cérebro, ele precisa de um corpo, que é formado pelos outros componentes do micro, incluindo memória, HD, placa de vídeo e de rede, monitor, teclado e mouse.

Dentro do mundo PC, tudo começou com o 8088, lançado pela Intel em 1979 e usado no primeiro PC, lançado pela IBM em 1981. Depois veio o 286, lançado em 1982, e o 386, lançado em 1985.

O 386 pode ser considerado o primeiro processador moderno, pois foi o primeiro a incluir o conjunto de instruções básico, usado até os dias de hoje. O 486, que ainda faz parte das lembranças de muita gente que comprou seu primeiro computador durante a década de 1990, foi lançado em 1989, mas ainda era comum encontrar micros com ele à venda até por volta de 1997.

Depois entramos na era atual, inaugurada pelo Pentium, que foi lançado em 1993, mas demorou alguns anos para se popularizar e substituir os 486. Em 1997 foi lançado o Pentium MMX, que deu um último fôlego à plataforma. Depois, em 1997, veio o Pentium II, que usava um encaixe diferente e por isso era incompatível com as placas-mãe antigas. A AMD soube aproveitar a oportunidade, desenvolvendo o K6-2, um chip com uma arquitetura similar ao Pentium II, mas que era compatível com as placas soquete 7 antigas.

A partir daí as coisas passaram a acontecer mais rápido. Em 1999 foi lançado o Pentium III e em 2000 o Pentium 4, que trouxe uma arquitetura bem diferente dos chips anteriores, otimizada para permitir o lançamento de processadores que trabalham a freqüências mais altas.

O último Pentium III trabalhava a 1.0 GHz, enquanto o Pentium 4 atingiu rapidamente os 2.0 GHz, depois 3 GHz e depois 3.5 GHz. O problema é que o Pentium 4 possuía um desempenho por ciclo de clock inferior a outros processadores, o que faz com que a alta freqüência de operação servisse simplesmente para equilibrar as coisas. A primeira versão do Pentium 4 operava a 1.3 GHz e, mesmo assim, perdia para o Pentium III de 1.0 GHz em diversas aplicações.

Quanto mais alta a freqüência do processador, mais ele esquenta e mais energia consome, o que acaba se tornando um grande problema. Quando as possibilidades de aumento de clock do Pentium 4 se esgotaram, a Intel lançou o Pentium D, uma versão dual-core do Pentium 4. Inicialmente os Pentium D eram caros, mas com o lançamento do Core 2 Duo eles caíram de preço e passaram a ser usados até mesmo em micros de baixo custo. Os Pentium D eram vendidos sob um sistema de numeração e não sob a freqüência real de clock. O Pentium D 820, por exemplo, opera a 2.8 GHz, enquanto o 840 opera a 3.2 GHz.

Em 2003 a Intel lançou o Pentium M, um chip derivado da antiga arquitetura do Pentium III, que consome pouca energia, esquenta pouco e mesmo assim oferece um excelente desempenho. Um Pentium M de 1.4 GHz chega a superar um Pentium 4 de 2.6 GHz em diversas aplicações.

O Pentium M foi desenvolvido originalmente para ser usado em notebooks, mas se mostrou tão eficiente que acabou sendo usado como base para o desenvolvimento da plataforma Core, usada nos processadores Core 2 Duo fabricados atualmente pela Intel. O Pentium 4 acabou se revelando um beco sem saída, descontinuado e condenado ao esquecimento.

Paralelamente a todos esses processadores, temos o Celeron, uma versão mais barata, mas com um desempenho um pouco inferior, por ter menos cache ou outras limitações. Na verdade, o Celeron não é uma família separada de chips, mas apenas um nome comercial usado nas versões mais baratas (com metade ou um quarto do cache) de vários processadores Intel. Existem Celerons baseados no Pentium II, Pentium III, Pentium 4, Pentium M e também o Celeron 4xx, que é uma versão single-core (e com menos cache) do Core 2 Duo.

Para efeito de comparação, entre os chips antigos e os atuais, um 486 tinha cerca de 1 milhão de transistores e chegou a 133 MHz, enquanto o Pentium MMX tinha 4.3 milhões e chegou a 233 MHz. Um Pentium 4 (Prescott) tem 125 milhões e chegou aos 3.8 GHz, freqüência mais alta atingida por um processador Intel (ou AMD) lançado oficialmente até hoje, recorde que deve ser quebrado apenas em 2008 ou 2009.

O transístor é a unidade básica do processador, capaz de processar um bit de cada vez. Mais transistores permitem que o processador processe mais instruções de cada vez enquanto a freqüência de operação determina quantos ciclos de processamento são executados por segundo.

Continuando, temos os processadores da AMD. Ela começou produzindo processadores 386 e 486, muito similares aos da Intel, porém mais baratos. Quando a Intel lançou o Pentium, que exigia o uso de novas placas-mãe, a AMD lançou o "5x86", um 486 de 133 MHz, que foi bastante popular, servindo como uma opção barata de upgrade. Embora o "5x86" e o clock de 133 MHz dessem a entender que se tratava de um processador com um desempenho similar a um Pentium 133, o desempenho era muito inferior, mal concorrendo com um Pentium 66. Este foi o primeiro de uma série de exemplos, tanto do lado da AMD, quanto do lado da Intel, em que existiu uma diferença gritante entre o desempenho de dois processadores do mesmo clock. Embora seja um item importante, a freqüência de operação não é um indicador direto do desempenho do processador.

Uma analogia poderia ser feita em relação aos motores de carro. Os motores de 1.6 do final da década de 70, usados nas Brasílias e nos Fuscas, tinham 44 cavalos de potência, enquanto os motores 1.0 atuais chegam a mais de 70 cavalos. Além da capacidade cúbica, existem muitos outros fatores, como a eficiência do sistema de injeção de ar e combustível, taxa de compressão, refrigeração, etc.

Depois do 5x68 a AMD lançou o K5, um processador similar ao Pentium, mas que não fez tanto sucesso. Ele foi seguido pelo K6 e mais tarde pelo K6-2, que novamente fez bastante sucesso, servido como uma opção de processador de baixo custo e, ao mesmo tempo, como uma opção de upgrade para quem tinha um Pentium ou Pentium MMX.

Esta era do K6-2 foi uma época negra da informática, não pelo processador em si (que excluindo o desempenho em jogos, tinha um bom custo-benefício), mas pelas placas-mãe baratas que inundaram o mercado. Aproveitando o baixo custo do processador, os fabricantes passaram a desenvolver placas cada vez mais baratas (e de qualidade cada vez pior) para vender mais, oferecendo PCs de baixo custo. A época foi marcada por aberrações. Um certo fabricante chegou a lançar uma família de placas sem cache L2, que pifavam em média depois de um ano de uso.

As coisas voltaram aos trilhos com o Athlon, que foi o primeiro grande processador (tanto em desempenho, quanto em tamanho :) da AMD. A primeira versão usava um formato de cartucho (slot A) similar ao Pentium II, mas incompatível com as placas para ele. Ele foi sucedido pelo Athlon Thunderbird, que passou a usar o formato de soquete utilizado (com atualizações) até os dias de hoje.


Athlon XP, para placas soquete A

Competindo com o Celeron, a AMD produziu o Duron, um processador de baixo custo, idêntico ao Athlon, mas com menos cache. Em 2005 o Athlon foi descontinuado e o cargo foi herdado pelo Sempron, uma versão aperfeiçoada do Duron (com mais cache e capaz de atingir freqüências mais altas), que passou a ser vendido segundo um índice de desempenho (em relação ao Pentium 4) e não mais segundo o clock real.

Por volta de 2000, surgiram as primeiras notícias do "SledgeHammer", um processador de 64 bits, que foi finalmente lançado em versão doméstica na forma do Athlon 64, que passou a ser o topo de linha da AMD. Apesar das mudanças internas, o Athlon 64 continua sendo compatível com os programas de 32 bits, da mesma forma que os processadores atuais são capazes de rodar softwares da época do 386, muito embora tenham incorporado diversos novos recursos.

Na prática, o fato de ser um processador de 64 bits não torna o Athlon 64 gritantemente mais rápido, mesmo em aplicativos otimizados (os ganhos de desempenho surgem mais devido ao controlador de memória integrado e aos novos registradores). A principal vantagem dos processadores de 64 bits é derrubar uma limitação inerente a todos os processadores de 32 bits, que são capazes de acessar apenas 4 GB de memória RAM, um limite que está se tornando cada vez mais uma limitação grave em várias áreas.

Os 4 GB de memória podem não parecer um obstáculo imediato, mas lembre-se de que há duas décadas os PCs eram vendidos com 128 KB de memória, há uma década já vinham com 4 ou 8 MB, e hoje são vendidos com 512 MB ou mais.

O Athlon 64 deu origem ao Athlon X2, o primeiro processador dual-core da AMD, onde temos dois processadores Athlon 64 no mesmo encapsulamento, dividindo a carga de processamento e também o Turion, que é uma versão de baixo custo do Athlon 64, destinado a notebooks.

MEMÓRIAS

Memória


Depois do processador, temos a memória RAM, u
sada por ele para armazenar os arquivos e programas que estão sendo executados, como uma espécie de mesa de trabalho. A quantidade de memória RAM disponível tem um grande efeito sobre o desempenho, já que sem memória RAM suficiente o sistema passa a usar memória swap, que é muito mais lenta.

A principal característica da memória RAM é que ela é volátil, ou seja, os dados se perdem ao reiniciar o micro. É por isso que ao ligar é necessário sempre refazer todo o processo de carregamento, em que o sistema operacional e aplicativos usados são transferidos do HD para a memória, onde podem ser executados pelo processador.

Os chips de memória são vendidos na forma de pentes de memória. Existem pentes de várias capacidades, e normalmente as placas possuem dois ou três encaixes disponíveis. Você pode instalar um pente de 512 MB junto com o de 256 MB que veio no micro para ter um total de 768 MB, por exemplo.


Módulo DDR

Ao contrário do processador, que é extremamente complexo, os chips de memória são formados pela repetição de uma estrutura bem simples, formada por um par de um transístor e um capacitor. Um transístor solitário é capaz de processar um único bit de cada vez, e o capacitor permite armazenar a informação por um certo tempo. Essa simplicidade faz com que os pentes de memória sejam muito mais baratos que os processadores, principalmente se levarmos em conta o número de transistores.

Um pente de 1 GB é geralmente composto por 8 chips, cada um deles com um total de 1024 megabits, o que equivale a 1024 milhões de transistores. Um Athlon 64 X2 tem "apenas" 233 milhões e custa bem mais caro que um pente de memória.

Existem basicamente dois tipos de memória em uso: SDR e DDR. As SDR são o tipo tradicional, onde o controlador de memória realiza apenas uma leitura por ciclo, enquanto as DDR são mais rápidas, pois fazem duas leituras por ciclo. O desempenho não chega a dobrar, pois o acesso inicial continua demorando o mesmo tempo, mas melhora bastante.

Os pentes de memória SDR são usados em micros antigos: Pentium II e Pentium III e os primeiros Athlons e Durons soquete A. Por não serem mais fabricados, eles são atualmente muito mais raros e caros que os DDR, algo semelhante ao que aconteceu com os antigos pentes de 72 vias, usados na época do Pentium 1.

É fácil diferenciar os pentes SDR e DDR, pois os SDR possuem dois chanfros e os DDR apenas um. Essa diferença faz com que também não seja possível trocar as bolas, encaixando por engano um pente DDR numa placa-mãe que use SDR e vice-versa (a menos que você use um alicate e um martelo, mas a placa provavelmente não vai funcionar mais depois ;).

Mais recentemente, temos assistido a uma nova migração, com a introdução dos pentes de memória DDR2. Neles, o barramento de acesso à memória trabalha ao dobro da freqüência dos chips de memória propriamente ditos. Isso permite que sejam realizadas duas operações de leitura por ciclo, acessando dois endereços diferentes.

Como a capacidade de realizar duas transferências por ciclo introduzida nas memórias DDR foi preservada, as memórias DDR2 são capazes de realizar um total de 4 operações de leitura por ciclo, uma marca impressionante :). Existem ainda alguns ganhos secundários, como o menor consumo elétrico, útil em notebooks.

Os pentes de memória DDR2 são incompatíveis com as placas-mãe antigas. Eles possuem um número maior de contatos (um total de 240, contra 184 dos pentes DDR), e o chanfro central é posicionado de forma diferente, de forma que não seja possível instalá-los nas placas antigas por engano. Muitos pentes são vendidos com um dissipador metálico, que ajuda na dissipação do calor e permite que os módulos operem a freqüências mais altas.


Módulo DDR2

Algumas placas (geralmente modelos de baixo custo) possuem dois tipos de soquete, permitindo usar módulos SDR e DDR, DDR e DDR2 ou DDR2 e DDR3 de acordo com a conveniência, mas sem misturar os dois tipos. Elas são comuns durante os períodos de transição, quando uma tecnologia de memória é substituída por outra e podem ser uma opção interessante, já que permitem aproveitar os módulos antigos.

De qualquer forma, apesar de toda a evolução a memória RAM continua sendo muito mais lenta que o processador. Para atenuar a diferença, são usados dois níveis de cache, incluídos no próprio processador: o cache L1 e o cache L2.

O cache L1 é extremamente rápido, trabalhando próximo à freqüência nativa do processador. Na verdade, os dois trabalham na mesma freqüência, mas são necessários alguns ciclos de clock para que a informação armazenada no L1 chegue até as unidades de processamento. No caso do Pentium 4, chega-se ao extremo de armazenar instruções já decodificadas no L1: elas ocupam mais espaço, mas eliminam este tempo inicial.

De uma forma geral, quanto mais rápido o cache, mais espaço ele ocupa e menos é possível incluir no processador. É por isso que o Pentium 4 inclui apenas um total de 20 KB desse cache L1 ultra-rápido, contra os 128 KB do cache um pouco mais lento usado no Sempron.

Em seguida vem o cache L2, que é mais lento tanto em termos de tempo de acesso (o tempo necessário para iniciar a transferência) quanto em largura de banda, mas é bem mais econômico em termos de transistores, permitindo que seja usado em maior quantidade.

O volume de cache L2 usado varia muito de acordo com o processador. Enquanto a maior parte dos modelos do Sempron utilizam apenas 256 KB, os modelos mais caros do Core 2 Duo possuem 4 MB completos.

É VANTAGEM SE UTILIZAR UM MODEM ROTEADO

Quase todos os modems ADSL vendidos atualmente podem ser configurados como roteador, compartilhando a conexão entre os micros da rede local, sem a necessidade de usar um micro com duas placas de rede para isso.

Em geral os modems ADSL fazem um bom trabalho, eles não oferecem opções mais avançadas, como por exemplo incluir um proxy transparente, para fazer cache das páginas e arquivos acessados e assim melhorar a velocidade de acesso, mas são capazes de fazer o arroz com feijão, ou seja, como bloquear tentativas de acesso vindos da Internet e redirecionar portas para micros da rede local.

As vantagens de usar o modem configurado como roteador são:

1- Não é preciso usar o pppoeconf para se conectar, nem configurar o compartilhamento da conexão. A conexão é estabelecida pelo próprio modem, basta ligá-lo no hub e configurar os demais PCs para obterem a configuração da rede via DHCP

2- O modem fica com as portas de entrada, de forma que qualquer tipo de ataque proveniente da Internet é bloqueado pelo próprio modem, antes de chegar nos micros da rede local. O modem serve como uma camada adicional de proteção.

As desvantagens são:

1- Como as portas de entrada ficam com o modem, é preciso configurar o redirecionamento de portas para que você possa usar qualquer servidor ou programa que precise de portas de entrada. Um exemplo clássico é o bittorrent, que precisa que pelo menos uma das portas entre a 6881 e a 6889 esteja aberta.

2- Ao contrário dos servidores Linux, os modems ADSL não costumam receber atualizações de segurança. Não é impossível que uma brecha de segurança no próprio modem permita que alguém de fora altere a configuração de redirecionamento de portas (por exemplo) e assim consiga ter acesso aos micros da sua rede local. Alguns modems permitem inclusive a instalação de programas adicionais. Do ponto de vista da segurança um servidor Linux atualizado e bem configurado é mais seguro.

REDES WIRELESS

Redes wireless


Em uma rede wireless, o switch é substituído pelo ponto de acesso (access-point em inglês, comumente abreviado como "AP" ou "WAP", de "wireless access point"), que tem a mesma função central que o switch desempenha nas redes com fios: retransmitir os pacotes de dados, de forma que todos os micros da rede os recebam. A topologia é semelhante à das redes de par trançado, com o switch central substituído pelo ponto de acesso. A diferença é que são usados transmissores e antenas em vez de cabos.

Os pontos de acesso possuem uma saída para serem conectados em um switch tradicional, permitindo que você "junte" os micros da rede cabeada com os que estão acessando através da rede wireless, formando uma única rede, o que é justamente a configuração mais comum.

Existem poucas vantagens em utilizar uma rede wireless para interligar micros desktops, que afinal não precisam sair do lugar. O mais comum é utilizar uma rede cabeada normal para os desktops e utilizar uma rede wireless complementar para os notebooks, palmtops e outros dispositivos móveis.

Você utiliza um switch tradicional para a parte cabeada, usando um cabo também para interligar o ponto de acesso à rede. O ponto de acesso serve apenas como a "última milha", levando o sinal da rede até os micros com placas wireless. Eles podem acessar os recursos da rede normalmente, acessar arquivos compartilhados, imprimir, acessar a Internet, etc. A única limitação fica sendo a velocidade mais baixa e a latência um pouco mais alta das redes wireless.

Isso é muito parecido com juntar uma rede de 10 megabits, que utiliza um hub "burro" a uma rede de 100 megabits (ou uma rede de 100 megabits com uma rede gigabit), que utiliza um switch. Os micros da rede de 10 megabits continuam se comunicando entre si a 10 megabits, e os de 100 continuam trabalhando a 100 megabits, sem serem incomodados pelos vizinhos. Quando um dos micros da rede de 10 precisa transmitir para um da rede de 100, a transmissão é feita a 10 megabits, respeitando a velocidade do mais lento.

Nesse caso, o ponto de acesso atua como um bridge, transformando os dois segmentos em uma única rede e permitindo que eles se comuniquem de forma transparente. Toda a comunicação flui sem problemas, incluindo pacotes de broadcast.

Para redes mais simples, onde você precise apenas compartilhar o acesso à Internet entre poucos micros, todos com placas wireless, você pode ligar o modem ADSL (ou cabo) direto ao ponto de acesso. Alguns pontos de acesso trazem um switch de 4 ou 5 portas embutido, permitindo que você crie uma pequena rede cabeada sem precisar comprar um switch adicional.


Esquema de rede simples, com o ponto de acesso ligado ao modem ADSL,
permitindo a conexão do notebook

Com a miniaturização dos componentes e o lançamento de controladores que incorporam cada vez mais funções, tornou-se comum o desenvolvimento de pontos de acesso que incorporam funções adicionais. Tudo começou com modelos que incorporavam um switch de 4 ou 8 portas que foram logo seguidos por modelos que incorporam funções de roteador, combinando o switch embutido com uma porta WAN, usada para conectar o modem ADSL ou cabo, de onde vem a conexão. Estes modelos são chamados de wireless routers (roteadores wireless).


Roteador wireless com a porta WAN e um switch de 4 portas embutido

O ponto de acesso pode ser então configurado para compartilhar a conexão entre os micros da rede (tanto os ligados nas portas do switch quanto os clientes wireless), com direito a DHCP e outros serviços. Na maioria dos casos, estão disponíveis apenas as funções mais básicas, mas muitos roteadores incorporam recursos de firewall, VPN e controle de acesso.

Por estranho que possa parecer, as funções adicionais aumentam pouco o preço final, pois devido à necessidade de oferecer uma interface de configuração e oferecer suporte aos algoritmos de encriptação (RC4, AES, etc.), os pontos de acesso utilizam controladores relativamente poderosos. Com isso, os fabricantes podem implementar a maior parte das funções extras via software, ou utilizando controladores baratos. Isso faz com que comprar um roteador wireless saia bem mais barato do que comprar os dispositivos equivalentes separadamente. A única questão é mesmo se você vai utilizar ou não as funções extras.

Existem ainda roteadores wireless que incluem um modem ADSL, chamados de "ADSL Wireless Routers" (roteadores ADSL wireless). Basicamente, eles incluem os circuitos do modem ADSL e do roteador wireless na mesma placa, e rodam um firmware que permite controlar ambos os dispositivos. O link ADSL passa então a ser a interface WAN, que é compartilhada com os clientes wireless e com os PCs ligados nas portas do switch. O quinto conector de rede no switch é então substituído pelo conector para a linha de telefone (line), como neste Linksys WAG54G:


Detalhe das portas em um Linksys WAG54G

Embora mais raros, você vai encontrar também roteadores com modems 3G integrados (chamados de Cellular Routers ou 3G Routers), que permitem conectar via EVDO (Vivo) ou UMTS/EDGE/GPRS (Claro, Tim e outras), usando um plano de dados. O modem celular pode ser tanto integrado diretamente à placa principal quanto (mais comum) instalado em um slot PC-Card. A segunda opção é mais interessante, pois permite que você use qualquer placa de modem.

Dois exemplos de roteadores 3G são o Kyocera KR1 e o ZYXEL ZYWALL 2WG. Em ambos os casos os roteadores usam placas externas, que são adquiridas separadamente. O Kyocera suporta tanto modems PC-Card quanto USB, enquanto o ZYXEL suporta apenas modems PC-Card:


Roteadores 3G: Kyocera KR1 e ZYXEL ZYWALL 2WG

Alguns modelos combinam o modem 3G e um modem ADSL, oferendo a opção de usar a conexão 3G como um fallback para o ADSL, usando-a apenas quando o ADSL perde a conexão. Esta combinação é interessante para empresas e para quem depende da conexão para trabalhar, mas resulta em produtos mais caros, que nem sempre são interessantes do ponto de vista do custo-benefício.

Continuando, além dos pontos de acesso "simples" e dos roteadores wireless, existe ainda uma terceira categoria de dispositivos, os wireless bridges (bridges wireless), que são versões simplificadas dos pontos de acesso, que permitem conectar uma rede cabeada com vários micros a uma rede wireless já existente. A diferença básica entre um bridge e um ponto de acesso é que o ponto de acesso permite que clientes wireless se conectem e ganhem acesso à rede cabeada ligada a ele, enquanto o bridge faz o oposto, se conectando a um ponto de acesso já existente, como cliente.

O bridge é ligado ao switch da rede cabeada e é em seguida configurado como cliente do ponto de acesso remoto através de uma interface web. Uma vez conectado às duas redes, o bridge se encarrega de transmitir o tráfego de uma rede à outra, permitindo que os PCs conectados às duas redes se comuniquem.

Usar um ponto de acesso de um lado e um bridge do outro permite conectar diretamente duas redes distantes, sobretudo em prédios diferentes ou em áreas rurais, onde embora a distância seja relativamente grande, existe linha visada entre os dois pontos. Como o trabalho de um bridge é mais simples que o de um ponto de acesso, muitos fabricantes aproveitam para incluir funções de bridge em seus pontos de acesso, de forma a agregar valor.

Fisicamente, os bridges são muito parecidos com um ponto de acesso, já que os componentes básicos são os mesmos. Em geral eles são um pouco mais baratos, mas isso varia muito de acordo com o mercado a que são destinados. A seguir temos o D-Link DWL-3150 e o Linksys WET54G, dois exemplos de bridges de baixo custo:


Bridges wireless: D-Link DWL-3150 e Linksys WET54G

Continuando, existe também a possibilidade de criar redes ad-hoc, onde dois ou mais micros com placas wireless se comunicam diretamente, sem utilizar um ponto de acesso, similar ao que temos ao conectar dois micros usando um cabo cross-over.

No modo ad-hoc a área de cobertura da rede é bem menor, já que a potência de transmissão das placas e a sensibilidade das antenas são quase sempre menores que as do ponto de acesso e existem também limitações com relação ao controle de acesso e aos sistemas de encriptação disponíveis. Apesar disso, as redes ad-hoc são um opção interessante para criar redes temporárias, sobretudo quando você tem vários notebooks em uma mesma sala.

Na época do 802.11b, as redes ad-hoc ofereciam a desvantagem de não suportarem encriptação via WPA, o que tornava a rede bastante insegura. Mas, o suporte ao WPA está disponível ao utilizar clientes com placas 802.11g ou 802.11n e pode ser ativado na configuração da rede.

Com relação às placas, é possível encontrar tanto placas PC Card, Express Mini ou mini-PCI, para notebooks, quanto placas PCI e USB para micros desktop. Existem inclusive placas ultracompactas, que podem ser instaladas em um slot SD, destinadas a palmtops.


Placa Wi-Fi PC Card e placa no formato SD para uso em palmtops

Praticamente todos os notebooks à venda atualmente, muitos modelos de palmtops e até mesmo smartphones incluem transmissores wireless integrados. Hoje em dia, parece inconcebível comprar um notebook sem wireless, da mesma forma que ninguém mais imagina a idéia de um PC sem disco rígido, como os modelos vendidos no início da década de 1980.

Apesar disso, é bastante raro um notebook que venha com uma placa wireless "onboard". Quase sempre é usada uma placa Mini-PCI (uma versão miniaturizada de uma placa PCI tradicional, que usa um encaixe próprio) ou Express Mini (a versão miniaturizada do PCI Express), que pode ser substituída, assim como qualquer outro componente. Desde que não exista nenhuma trava ou incompatibilidade por parte do BIOS, você pode perfeitamente substituir a placa que veio pré-instalada.

Existem vários modelos de placas mini-pci no mercado, mas elas não são um componente comum, de forma que você só vai encontrá-las em lojas especializadas. É possível também substituir a placa que acompanha o notebook por outro modelo, melhor ou mais bem suportado no Linux, por exemplo.


Placa wireless Mini-PCI (à esquerda) e placa Express Mini

Não se engane pela foto. As placas mini-pci são muito pequenas, quase do tamanho de uma caixa de fósforos e os conectores da antena são quase do tamanho de uma cabeça de alfinete. Eles são relativamente frágeis, por isso é preciso ter cuidado ao plugá-los na placa. O fio branco vai sempre no conector no canto da placa e o preto no conector mais ao centro, como na foto.

Quase sempre, o notebook tem uma chave ou um botão que permite ligar e desligar o transmissor wireless. Antes de testar, verifique se ele está ativado. Em muitos casos, os botões são controlados via software (como em muitos notebooks da Acer) e precisam que um driver esteja instalado para funcionarem, como veremos em detalhes no capítulo 3.

Embora as placas mini-pci sejam componentes tão padronizados quanto as placas PC Card, sempre existe a possibilidade de algumas placas específicas não serem compatíveis com seu notebook. O ideal é sempre testar antes de comprar, ou comprar em uma loja que aceite trocar a placa por outra em caso de problemas.

As antenas não vão na própria placa, mas são montadas na tampa do monitor, atrás do LCD e o sinal vai até a placa através de dois cabos, que correm dentro da carcaça do notebook. Isso visa melhorar a recepção, já que quando o notebook está aberto, as antenas no topo da tela ficam em uma posição mais elevada, o que melhora a recepção. Notebooks com placas 802.11b ou 802.11g utilizam duas antenas, enquanto os com placas 802.11n tipicamente utilizam três:


Antenas da placa wireless na carcaça da tela do notebook

Isso faz com que as placas Mini-PCI e Express Mini levem uma certa vantagem sobre as placas wireless PC Card ou USB em termos de recepção. As placas PC Card precisam ser muito compactas, por isso invariavelmente possuem uma antena muito pequena, com pouca sensibilidade. Por não terem as mesmas restrições com relação ao espaço, as antenas incluídas nos notebooks são maiores, o que garante uma conexão mais estável, com um alcance muito maior. Isso ajuda até mesmo na autonomia das baterias, já que é possível reduzir a potência do transmissor wireless.

A exceção fica por conta das placas PC Card com saídas para antenas externas, como esta Senao NL-2511CD da foto a seguir. Ela é uma placa 802.11b, que era muito usada para fazer wardriving durante o boom inicial das redes wireless, quando a maioria das redes wireless ainda eram desprotegidas, ou utilizavam o WEP, que podia ser quebrado rapidamente. Hoje em dia ela não teria muita utilidade, já que está limitada a 11 megabits e não oferece suporte a WPA:


Placa wireless PC-Card com duas saídas para antenas externas

Muitos notebooks antigos, fabricados a partir de 2001/2002, que ainda não incluem placas wireless já possuem o slot mini-pci e a antena, permitindo que você compre e instale uma placa mini-pci, ao invés de ficar brigando com o alcance reduzido das placas PC-Card:


Conector para a placa wireless mini-PCI e detalhe com a conexão das antenas

Temos em seguida as placas wireless USB, que devido à praticidade e baixo custo estão se tornando cada vez mais populares. O principal motivo é que elas são baratas e fáceis de instalar (basta plugar na porta USB) e você pode utilizar a mesma placa wireless tanto no desktop quanto no notebook.

Existem tanto placas com antena interna, como este modelo da Belkin, quanto com antenas externas destacáveis, como no modelo abaixo. Nesses casos é possível inclusive substituir a antena por outra de maior ganho, melhorando a recepção e permitindo que você se conecte a pontos de acesso muito mais distantes:

As placas com antena interna geralmente sofrem com uma recepção ruim, pois as antenas são simples trilhas na placa de circuito, que oferecem pouco ganho, como você pode ver na placa D-Link desmontada da foto abaixo:

As placas USB com antena externa são melhores, já que antena oferece um maior ganho e você pode ajustar a posição da antena para obter a melhor recepção, mas é preciso tomar cuidado ou comprar, pois existem casos de placas com antenas falsas, onde a antena externa é apenas um enfeite de plástico, que não é sequer conectado à placa. É o mesmo que acontece com muitos adaptadores Bluetooth.

USE O FIREWALL DO SEU WINDOWS

Windows Firewall


O Windows Firewall é um firewall básico, que não oferece grandes vantagens sobre outros produtos nem é particularmente seguro, mas que oferece como vantagens o fato de já vir ativo por padrão (a partir do Windows XP SP2) e ser relativamente fácil de configurar. Ele é o absoluto mínimo em termos de proteção para uma máquina Windows diretamente conectada à Internet.

Na tela de configuração você tem apenas três opções: ativar o firewall (usando exceções), ativar sem permitir exceções ou desativá-lo:

Na aba "Exceções" você tem acesso a uma lista de programas e serviços que podem receber conexões de entrada. Por padrão, ficam marcadas as opções "Área de trabalho remota", "Assistência remota", "Compartilhamento de Arquivos e Impressoras" e "Estrutura UPnP". O acesso a arquivos e impressoras fica aberto apenas para a rede local e a Assistência remota (onde o convite precisa ser gerado manualmente) fica aberta para a Internet.

Você pode perceber que a aba "Exceções" (no screenshot da direita) mostra apenas os programas detectados pelo firewall, mas não as portas usadas por cada um. A idéia é que ao marcar um programa na lista, você automaticamente abre todas as portas usadas por ele. Ou seja, a regra se aplica a conexões destinadas ao aplicativo e não a uma porta específica (mais detalhes a seguir).

Clicando sobre o aplicativo e usando o botão "editar", você pode ver a lista das portas usadas por ele (no caso dos aplicativos que usam mais de uma porta). O "Compartilhamento de Arquivos e Impressoras", por exemplo, abre um total de 4 portas (139 TCP, 445 TCP, 137 UDP e 138 UDP), que correspondem às três portas usadas pelo protocolo NetBIOS e à porta 445 TCP usada pelo protocolo CIFS.

Clicando no "Alterar escopo" você pode definir a partir de quais endereços o aplicativo poderá ser acessado:

A opção "Qualquer computador (inclusive na Internet)" dispensa comentários, já que abre as portas para qualquer um que tenha acesso à sua máquina. Ela deve ser usada apenas no caso de programas de administração remota, programas P2P que realmente precisem de portas de entrada e nos casos em que você quiser disponibilizar servidores para a Internet.

A opção "Minha rede (sub-rede) somente" abre apenas para acessos provenientes da rede local. Em micros com duas placas de rede, que estão conectados simultaneamente à internet e a uma rede local, é importante configurar esta opção com atenção, evitando abrir serviços que devem ficar ativos apenas para a rede local (como o Compartilhamento de Arquivos e Impressoras) para a Internet.

A terceira opção, "Lista personalizada", é destinada a situações onde você quer que o serviço fique acessível apenas para alguns endereços específicos. Se um amigo vai se conectar à sua máquina via VNC para ajudar a resolver um problema, por exemplo, você pode perguntar qual é o endereço IP corrente e abrir a porta do VNC apenas para o endereço IP usado por ele, o que evita o risco de abrir a porta para toda a Internet. Você pode também especificar mais de um endereço, separando-os por vírgula:

Ao adicionar uma nova exceção à configuração do firewall, você tem a opção de indicar um programa ("Adicionar programa...") ou especificar manualmente a porta que deve ser aberta ("Adicionar Porta..."). Ao clicar no "Adicionar Programa", você tem acesso a um menu que mostra os programas instalados, permitindo que você escolha o desejado, enquanto que ao usar o "Adicionar Porta" você deve especificar manualmente a porta usada e se deve ser aberta a porta TCP ou UDP correspondente:

Em teoria, adicionar regras para aplicativos é um pouco mais seguro do que adicionar regras baseadas em portas, pois as exceções baseadas em aplicativos ficam ativas apenas enquanto o programa está aberto (ao fechar o programa, a porta é fechada no firewall). Veja que em ambas as opções você tem acesso ao botão "Alterar escopo", que permite especificar quais endereços terão acesso à porta aberta (o default é abrir para todos).

Concluindo, na aba "Avançado" você tem uma lista das interfaces disponíveis. Isso permite que você mantenha o firewall ativo para a interface da Internet, mas ao mesmo tempo desative-o para a interface da rede local (esta opção está disponível apenas a partir do Windows XP SP2):

O botão "ICMP > Configurações" permite abrir o firewall para um conjunto de pacotes ICMP. Por padrão, o firewall ativa a resposta a pings (Permitir solicitação de eco de entrada), opção que você pode desativar para tornar sua máquina um pouco menos visível a atacantes casuais, que escaneiam faixas de endereços da Internet em busca de alvos.

Uma observação é que você não consegue desativar os pings se a porta 445 (que faz parte do "Compartilhamento de Arquivos e Impressoras") estiver aberta nas exceções do firewall.



TOMADAS E AS EMENDAS PARA CABEAMENTO

Tomadas e emendas


Continuando, uma boa opção ao cabear é usar tomadas para cabos de rede, ao invés de simplesmente deixar os cabos soltos. Elas dão um acabamento mais profissional e tornam o cabeamento mais flexível, já que você pode ligar cabos de diferentes tamanhos às tomadas e substituí-los conforme necessário (ao mudar os micros de lugar, por exemplo). Existem vários tipos de tomadas de parede, tanto de instalação interna quanto externa:

O cabo de rede é instalado diretamente dentro da tomada. Em vez de ser crimpado, o cabo é instalado em um conector próprio (o tipo mais comum é o conector 110) que contém lâminas de contato. A instalação é feita usando uma chave especial, chamada, em inglês, de punch down tool:

A ferramenta pressiona o cabo contra as lâminas, de forma a criar o contato, e ao mesmo tempo corta o excesso de cabo. Alguns conectores utilizam uma tampa que, quando fechada, empurra os cabos, tornando desnecessário o uso da ferramenta (sistema chamado de tool-less ou auto-crimp). Eles são raros, justamente por serem mais caros.

O próprio conector inclui o esquema de cores dos cabos, junto com um decalque ou etiqueta que indica se o padrão usado corresponde ao EIA 568A ou ao EIA 568B. Se você estiver usando o EIA 568B no restante da rede e o esquema do conector corresponder ao EIA 568A, basta trocar a posição dos pares laranja e verde no conector.

Outro conector usado é o keystone jack, uma versão fêmea do conector RJ-45, que é usado em patch panels (veja a seguir) e pode ser usado também em conectores de parede, em conjunto com a moldura adequada. Os cabos são instalados da mesma forma que nos conectores de parede com o conector 110, usando a chave punch down:

Existem também emendas (couples) para cabos de rede, que consistem em dois conectores RJ-45 fêmea, que permitem ligar diretamente dois cabos, criando um único cabo mais longo:

O problema é que quase todas as emendas baratas que vemos à venda aqui no Brasil são destinados a cabos de voz (como a emenda amarelo-fosco da foto à esquerda) e não a cabos de rede. Isso significa que eles não atendem às especificações dos cabos cat5 ou cat5e e causam uma grande atenuação do sinal quando usadas.

Elas geralmente funcionam sem grandes problemas quando usados em conjunto com cabos curtos em redes de 100 megabits, mas causam graves problemas de atenuação em redes gigabit, desconectando a estação, ou fazendo com que as placas chaveiem para um modo de transmissão mais lento, de forma a manter a conexão.

Emendas destinadas a cabos de rede são quase sempre rotuladas com a categoria à qual atendem com uma etiqueta ou decalque (como a emenda prateada da foto à direita), mas são mais caras e mais difíceis de encontrar.

Na falta de uma, o correto é substituir os dois cabos por um único cabo maior ou fazer uma extensão, usando um cabo com um conector RJ-45 crimpado de um lado e um keystone jack (ou uma tomada de parede) do outro.